Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C. (The School of Chemical and Biomolecular Engineering, The University of Sydney) ;
  • See, H. (The School of Chemical and Biomolecular Engineering, The University of Sydney)
  • Published : 2008.03.31

Abstract

An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.

Keywords

References

  1. Aizawa, R., S. L. Vieira, M. Nakano and Y. Asako, 2000, Hysteresis phenomenon in flow-curves of ER fluids containing sulfonated polymer particles, In: Tao R. (ed) Proceedings of the 7th international conference on electro-rheological fluids and magneto-rheological suspensions, Honolulu, 19-23 July 1999. World scientific, Singapore, 595-602
  2. Ashour, O., C. A. Rogers and W. Kordonsky, 1996, Magnetorheological fluids: materials, characterization, and devices, J. Int. Mat. Syst. Struct. 7(2), 123-130 https://doi.org/10.1177/1045389X9600700201
  3. Barnes, H. A. and K. Walters, 1985, The yield stress myth?, Rheol. Acta 24, 323-326 https://doi.org/10.1007/BF01333960
  4. Barnes, H. A., 1999, The yield stress: a review or 'panta rei' - everything flows?, J. Non-Newt. Fluid Mech. 81, 133-178 https://doi.org/10.1016/S0377-0257(98)00094-9
  5. Block, H. and J. P. Kelly, 1988, Electro-rheology, J. Phys. D:Applied Physics 21, 1661-1677 https://doi.org/10.1088/0022-3727/21/12/001
  6. Bombard, A. J. F., M. Knobel, M. R. Alcantara and I. Joekes, 2002, Evaluation of magnetorheological suspensions based on carbonyl iron powders, J. Int. Mat. Syst. Struct. 13, 471-478 https://doi.org/10.1106/104538902030706
  7. Bossis, G. and E. Lemaire, 1991, Yield stresses in magnetic suspensions, J. Rheol. 35, 1345-1354 https://doi.org/10.1122/1.550234
  8. Brummer, R., 2006, Rheology Essentials of Cosmetic and Food Emulsions, Springer., Berlin
  9. Cho, M. S., H. J. Choi and M. S. Jhon, 2005, Shear stress analysis of a semiconducting polymer based electrorheological fluid system, Polymer 46, 11484-11488 https://doi.org/10.1016/j.polymer.2005.10.029
  10. Choi, H. J., I. B. Jang, J. Y. Lee, A. Pich, S. Bhattacharya and H. J. Adler, 2005, Magnetorheology of synthesized core-shell structured nanoparticle, IEEE Trans. Magn. 41, 3448-3450 https://doi.org/10.1109/TMAG.2005.855197
  11. Claracq, J., J. Sarrazin and J. Montfort, 2004, Viscoelastic properties of magnetorheological fluids, Rheol. Acta 43, 38-49 https://doi.org/10.1007/s00397-003-0318-7
  12. Coussot, P., 2005, Rheometry of Pastes, Suspensions and Granular Materials: Applications in Industry and Environment, Delta wiley, New York
  13. de Gans, B. J., C. Blom, A. P. Philipse and J. Mellema, 1999a, Linear viscoelasticity of an inverse ferrofluid, Phys. Rev. E 60, 4518-4527
  14. de Gans, B. J., H. Hoekstra and J. Mellema, 1999b, Non-linear magnetorheological behaviour of an inverse ferrofluid, Faraday Discuss. 112, 209-224 https://doi.org/10.1039/a809229j
  15. de Gans, B. J., N. Duin, D. Van den Ende and J. Mellema, 2000, The influence of particle size on the magnetorheological properties of an inverse ferrofluid, J. Chem. Phys. 113, 2032-2042 https://doi.org/10.1063/1.482011
  16. Ekwebelam, C. C. and H. See, 2007, Using oscillatory shear to probe the effects of bidispersity in inverse ferrofluids, Korea-Australia Rheol. J. 19, 35-42
  17. Espin, M. J., A. V. Delgado and F. Gonzalez-Caballero, 2006, Structural explanation of the rheology of a colloidal suspension under high dc electric field, Phys. Rev. E 73, (041503) 1-11
  18. Kawakami, T., R. Aizawa, M. Konishi and Y. Asako, 1999, ER suspensions of sulfonated poly(styrene-co-divinylbenzene) particles, Int. J. Mod. Phys. B. 13, 1721-1728
  19. Klingenberg, D. J. and C. F. Zukoski, 1990, Studies on the steady shear behaviour of electrorheological suspensions, Langmuir 6, 15-24 https://doi.org/10.1021/la00091a003
  20. Klingenberg, D. J., 2001, Magnetorheology: applications and challenges, AIChE J. 47, 246-249 https://doi.org/10.1002/aic.690470202
  21. Magnac, G., P. Meneroud, M. F. Six, G. Patient, R. Leletty and F. Claeyssen, 2006, Characterisation of magneto-rheological fluids for actuators applications, ACTUATOR 2006, 10th international conference on new actuators, Bremen, Germany, 856- 859
  22. Moeller, P. C. F., J. Mewis and D. Bonn, 2006, Yield stress and thixotropy: on the difficulty of measuring the yield stresses in practice, Soft Matter 2, 274-283 https://doi.org/10.1039/b517840a
  23. Park, H. J. and O. O. Park, 2001, Electrorheology and magnetorheology, Korea-Australia Rheol. J. 13, 13-17
  24. Park, S. J., M. S. Cho, S. T. Lim, H. J. Choi and M. S. Jhon, 2005, Electrorheology of multiwalled carbon nanotube/poly (methyl methacrylate) nanocomposites, Macromol. Rapid Commun. 26, 1563-1566 https://doi.org/10.1002/marc.200500384
  25. Parthasarathy, M. and D. J. Klingenberg, 1996, Electrorheology: mechanisms and models, Mater. Sci. Eng. R17, 57-103
  26. Popplewell, J., R. E. Rosenweig and J. K. Siller, 1995, Magnetorheology of ferrofluid composites, J. Magn. Magn. Mat. 149, 53-56 https://doi.org/10.1016/0304-8853(95)00336-3
  27. Rankin, P. J., A. T. Horvath and D. J. Klingenberg, 1999, Magnetorheology in viscoplastic media, Rheol. Acta 38, 471-477 https://doi.org/10.1007/s003970050198
  28. Saldivar-Guerrero, R. Richter, I. Rehberg, N. Aksel, L. Heymann and O. S. Rodriguez-Fernandez, 2005, Liquid to solid transition of inverse ferrofluids, Magnetohydrodynamics 41, 385- 390
  29. Schubring, A. W. and F. E. Filisko, 1995, Effect of cation concentration on electrorheological activity of amorphous alumino- silicates, In: Havelka K.O., Filisko F.E. (eds) Progress in electrorheology. Proceedings of the electrorheological materials and fluids symposium, Washington, DC, 21-22 August 1994. Plenum, New York, 215-230
  30. See, H., 1999, Advances in modeling the mechanisms and rheology of electrorheological fluids, Korea-Australia Rheol. J. 11, 169-195
  31. See, H., A. Kawai and F. Ikazaki, 2002a, The effect of mixing particles of different size on the electrorheological response under steady shear flow, Rheol. Acta 41, 55-60 https://doi.org/10.1007/s003970200005
  32. See, H., A. Kawai and F. Ikazaki, 2002b, Differences in the electrorheological response of a particle suspension under direct current and alternating current electric fields, Coll. Polym. Sci. 280(1), 24-29 https://doi.org/10.1007/s003960200003
  33. See, H. and R. Chen, 2004, The behaviour of a field responsive fluid under shear start-up, Rheol. Acta 43, 175-179 https://doi.org/10.1007/s00397-003-0336-5
  34. See, H., 2004, Non-Newtonian flow behaviour in particulate suspensions under magnetic fields, In: 15th Australasian fluid mechanics conference, The university of Sydney, Sydney, Australia, 13-17 December 2004, 41-43
  35. Skjeltorp, A. T., 1983, One and two dimensional crystallization of magnetic holes, Phys Rev Lett. 51, 2306-2309 https://doi.org/10.1103/PhysRevLett.51.2306
  36. Stanway, R., J. L. Sproston and A. K. El-Wahed, 1996, Applications of electro-rheological fluids in vibration control: a survey, Smart Mater. Struct. 5, 464-482 https://doi.org/10.1088/0964-1726/5/4/011
  37. Stanway, R., 2004, Smart fluids: current and future developments, Mater. Sci. Tech. 20, 931-939 https://doi.org/10.1179/026708304225019867
  38. Sung, J. H., Y. H. Lee, I. B. Jang, H. J. Choi and M. S. Jhon, 2004, Synthesis and electrorheological characteristics of microencapsulated conducting polymer, Designed Monomers and Polymers 7, 101-110 https://doi.org/10.1163/156855504322890061
  39. Volkova, O., G. Bossis, M. Guyot, V. Bashtovoi and A. Reks, 2000, Magnetorheology of magnetic holes compared to magnetic particles, J. Rheol. 44, 91-104 https://doi.org/10.1122/1.551075
  40. Wereley, N. M., A. Chaudhuri, J. H. Yoo, S. John, S. Kotha, A. Suggs, R. Radhakrishnan, B. J. Love and T. S. Sudarshan, 2006, Bidisperse magnetorheological fluids using Fe particles at nanometer and micron scale, J. Int. Mat. Syst. Struct. 17, 393-401 https://doi.org/10.1177/1045389X06056953