DOI QR코드

DOI QR Code

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells

직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향

  • Han, Chang-Hwa (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University) ;
  • Kim, Nam-Hoon (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University) ;
  • Lee, Joong-Hee (Dept. of Hydrogen and Fuel Cell Engineering, Chonbuk National University)
  • 한창화 (전북대학교 수소.연료전지 특성화대학원) ;
  • 김남훈 (전북대학교 수소.연료전지 특성화대학원) ;
  • 이중희 (전북대학교 수소.연료전지 특성화대학원)
  • Received : 2011.05.30
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

Keywords

References

  1. C. C. Yang, S. J. Chiu, C. T. Lin, "Electro chemical performance of an air-breathing direct methanol fuel cell using poly (vinyl alcohol)/ hydroxyapatite composite polymer membrane", J. Power Sources, Vol. 177, No. 1, 2008, pp. 40-49. https://doi.org/10.1016/j.jpowsour.2007.11.010
  2. S. Eccarius, B. L. Garcia, C. Hebling, J. W. Weidner, "Experimental validation of a methanol crossover model in DMFC applications", J. Power Sources, Vol. 179, No. 2, 2008, pp. 723-733. https://doi.org/10.1016/j.jpowsour.2007.11.102
  3. H. S. Lee, B. C. Bae, J. Y. Lee, S. A. Hong, H. Y. Ha, "Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance", Trans. of the Korea Hydrogen and New Energy Society, Vol. 16, No. 1, 2005, pp. 31-39.
  4. S. V. Andrian, J. Meusinger, "Process analysis of a liquid-feed direct methanol fuel cell system", J. Power Sources, Vol. 91, No. 2, 2000, pp. 193-201. https://doi.org/10.1016/S0378-7753(00)00472-9
  5. B. Gurau, E. S. Smotkin, "Methanol crossover in direct methanol fuel cells: a link between power and energy density", J. Power Sources, Vol. 112, No. 2, 2002, pp. 339-352. https://doi.org/10.1016/S0378-7753(02)00445-7
  6. S. Surampidi, S. R. Narayanan, E. Vamos, H. Frank, G. Halpert, A. LaConti, J. Kosek, G. K. Surya Prakash, G. A. Olah, "Advances in direct oxidation methanol fuel cells", J. Power Sources, Vol. 47, No. 3, 1994, pp. 377-385. https://doi.org/10.1016/0378-7753(94)87016-0
  7. D. H. Jung, C. H. Lee, C. S. Kim, D. R. Shin, "Performance of a direct methanol polymer electrolyte fuel cell", J. Power Sources, Vol. 71, No. 1-2, 1998, pp. 169-173. https://doi.org/10.1016/S0378-7753(97)02793-6
  8. N. Nakagawa, Y. Xiu, "Performance of a direct methanol fuel cell operated at atmospheric pressure", J. Power Sources, Vol. 118, No. 1-2, 2003, pp. 248-255. https://doi.org/10.1016/S0378-7753(03)00090-9
  9. T. I. Valdez, S. R. Narayanan, "Recent studies on methanol crossover in liquid-feed direct methanol fuel cells," 194th meeting of the electrochemical society, Boston, Nov. 1998.
  10. X. Ren, M. S. Wilson, S. Gottesfeld, "On direct and indirect methanol fuel cells for transportation applications," Electrochem. Soc. Proc., Vol. 95, No. 23, 1995, pp. 252.
  11. A. Oedegaad, C. Hentschel, "Characterisation of a portable DMFC stack and a methanol-feeding concept", J. Power Sources, Vol. 158, No. 1, 2006, pp.177-187. https://doi.org/10.1016/j.jpowsour.2005.06.044
  12. W. Vielstich, "Handbook of Fuel Cells", Vol. 1, John Wiley and Sons Ltd., Chichester, United Kingdom, 2003, Chapter 4.
  13. R. Jiang, C. Rong, D. Chu, "Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method", J. Power Sources, Vol. 126, No. 1, 2004, pp. 119-124. https://doi.org/10.1016/j.jpowsour.2003.08.022
  14. K. Scott, W. M. Taama, P. Argyropoulos, K. Sundmacher, "The impact of mass transport and methanol crossover on the direct methanol fuel cell", J. Power Sources, Vol. 83, No. 1-2, 1999, pp. 204-216. https://doi.org/10.1016/S0378-7753(99)00303-1
  15. M. K. Ravikumar, A. K. Shukla, "Effect of methanol crossover in a liquid-feed polymer -electrolyte direct methanol fuel cell," J. Electrochem. Soc., Vol.143, No. 8, 1996, pp. 2601-2606. https://doi.org/10.1149/1.1837054
  16. H. Dohle, J. Merge, D. Stolten, "Heat and power management of a direct- methanol- fuel-cell (DMFC) system", J. Power Sources, Vol. 111, No. 2, 2002, pp. 268-282. https://doi.org/10.1016/S0378-7753(02)00339-7
  17. K. Scott, W. M. Taama, P. Argyropoulos, K. Sundmacher, "The impact of mass transport and methanol crossover on the direct methanol fuel cell", J. Power Sources, Vol. 83, No. 1-2, 1999, pp. 204-216. https://doi.org/10.1016/S0378-7753(99)00303-1
  18. T. Schaffer, V. Hacker, T. Hejze, T. Tschinder, J. O. Besenhard, P. Prenninger, "Introduction of an improved gas chromatographic analysis and comparison of methods to determine methanol crossover in DMFCs", J. Power Sources, Vol. 145, No. 2, 2005, pp. 188-198. https://doi.org/10.1016/j.jpowsour.2004.11.074