• 제목/요약/키워드: cosymplectic manifolds

검색결과 44건 처리시간 0.024초

SOME NOTES ON NEARLY COSYMPLECTIC MANIFOLDS

  • Yildirim, Mustafa;Beyendi, Selahattin
    • 호남수학학술지
    • /
    • 제43권3호
    • /
    • pp.539-545
    • /
    • 2021
  • In this paper, we study some symmetric and recurrent conditions of nearly cosymplectic manifolds. We prove that Ricci-semisymmetric and Ricci-recurrent nearly cosymplectic manifolds are Einstein and conformal flat nearly cosymplectic manifold is locally isometric to Riemannian product ℝ × N, where N is a nearly Kähler manifold.

QUASI HEMI-SLANT SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS

  • Prasad, Rajendra;Verma, Sandeep Kumar;Kumar, Sumeet;Chaubey, Sudhakar K
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.257-273
    • /
    • 2020
  • We introduce and study quasi hemi-slant submanifolds of almost contact metric manifolds (especially, cosymplectic manifolds) and validate its existence by providing some non-trivial examples. Necessary and sufficient conditions for integrability of distributions, which are involved in the definition of quasi hemi-slant submanifolds of cosymplectic manifolds, are obtained. Also, we investigate the necessary and sufficient conditions for quasi hemi-slant submanifolds of cosymplectic manifolds to be totally geodesic and study the geometry of foliations determined by the distributions.

Critical rimennian metrics on cosymplectic manifolds

  • Kim, Byung-Hak
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.553-562
    • /
    • 1995
  • In a Recent paper [3], D. Chinea, M. Delon and J. C. Marrero proved that a cosymplectic manifold is formal and constructed an example of compact cosymplectic manifold which is not a global product of a Kaehler manifold with the circle. In this paper we study the compact cosymplectic manifolds with critical Riemannian metrics.

  • PDF

On f-cosymplectic and (k, µ)-cosymplectic Manifolds Admitting Fischer -Marsden Conjecture

  • Sangeetha Mahadevappa;Halammanavar Gangadharappa Nagaraja
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.507-519
    • /
    • 2023
  • The aim of this paper is to study the Fisher-Marsden conjucture in the frame work of f-cosymplectic and (k, µ)-cosymplectic manifolds. First we prove that a compact f-cosymplectic manifold satisfying the Fisher-Marsden equation R'*g = 0 is either Einstein manifold or locally product of Kahler manifold and an interval or unit circle S1. Further we obtain that in almost (k, µ)-cosymplectic manifold with k < 0, the Fisher-Marsden equation has a trivial solution.

ON SLANT RIEMANNIAN SUBMERSIONS FOR COSYMPLECTIC MANIFOLDS

  • Erken, Irem Kupeli;Murathan, Cengizhan
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1749-1771
    • /
    • 2014
  • In this paper, we introduce slant Riemannian submersions from cosymplectic manifolds onto Riemannian manifolds. We obtain some results on slant Riemannian submersions of a cosymplectic manifold. We also give examples and inequalities between the scalar curvature and squared mean curvature of fibres of such slant submersions in the cases where the characteristic vector field is vertical or horizontal.

The Critical Point Equation on 3-dimensional α-cosymplectic Manifolds

  • Blaga, Adara M.;Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • 제60권1호
    • /
    • pp.177-183
    • /
    • 2020
  • The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected α-cosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature -α2, provided Dλ ≠ (ξλ)ξ. We also give several interesting corollaries of the main result.

*-Ricci Soliton on (κ < 0, µ)-almost Cosymplectic Manifolds

  • Rani, Savita;Gupta, Ram Shankar
    • Kyungpook Mathematical Journal
    • /
    • 제62권2호
    • /
    • pp.333-345
    • /
    • 2022
  • We study *-Ricci solitons on non-cosymplectic (κ, µ)-acs (almost cosymplectic) manifolds M. We find *-solitons that are steady, and such that both the scalar curvature and the divergence of the potential field is negative. Further, we study concurrent, concircular, torse forming and torqued vector fields on M admitting Ricci and *-Ricci solitons. Also, we provide some examples.

Canonical foliations of almost f - cosymplectic structures

  • Pak, Hong-Kyung
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.89-94
    • /
    • 2002
  • 본 논문은 주로 개 f-코심플렉틱 다양체를 다룬다. 이 개념은 개 코심플렉틱 다양체와 개 겐모츠 다양체를 포함한다. 개 코심플렉틱 다양체는 [1]에서 도입된 이래 [2], [3], [4] 등 여러 학자들에 의해 연구되어져 왔으며 개 겐모츠 다양체는 [5]에서 도입된 이래 [6], [7] 등에서 연구되어져 왔다. 본 논문에서는 개f-코심플렉틱 다양체의 접촉 초함수에 의해 정의되는 정규 엽층구조의 기하학적 성질을 연구한다. 본 논문의 목적은 [8], [9]에서 얻은 성과를 확장하는 것이다.

  • PDF