# Canonical foliations of almost f-cosymplectic structures\*

## Hong Kyung Pak"

요 약 본 논문은 주로 개 f-코심플렉틱 다양체를 다룬다. 이 개념은 개 코심플렉틱 다양체와 개 겐모츠 다양체를 포함한다. 개 코심플렉틱 다양체는 [1]에서 도입된 이래 [2], [3], [4] 등 여러 학자들에 의해 연구되어져 왔으며 개 겐모츠 다양체는 [5]에서 도입된 이래 [6], [7] 등에서 연구되어져 왔다. 본 논문에서는 개 f-코심플렉틱 다양체의 접촉 초함수에 의해 정의되는 정규 엽층구조의 기하학적 성질을 연구한다. 본 논문의 목적은 [8], [9]에서 얻은 성과를 확장하는 것이다.

**Abstract** The present paper mainly treats with almost f-cosymplectic manifolds. This notion contains almost cosymplectic and almost Kenmotsu manifolds. Almost cosymplectic manifolds introduced in [1] have been studied by many schalors, say [2], [3], [4], and almost Kenmotsu manifolds introduced in [5] have been studied in [6], [7]. The present paper studies some geometrical and topological properties of the canonical foliation defined by the contact distribution of an almost f-cosymplectic manifold. The purpose of the present paper is to extend the results obtained in [8], [9].

#### 1. Introduction

Let M be a (2n+1)-dimensional manifold endowed with an almost contact structure  $(\phi, \xi, \eta)$ , that is,  $\phi$  is a tensor field of type (1,1),  $\xi$  is a vector field,  $\eta$  is a 1-form satisfying the conditions

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1.$$

If M admits a Riemannian metric g compatible with  $(\phi, \xi, \eta)$ , that is,

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

for any  $X, Y \in \Gamma(TM)$  (:= the Lie algebra of all vector fields on M), M is called an almost contact

*metric manifold.* On such a manifold the fundamental form  $\boldsymbol{\Phi}$  is defined by

$$\Phi(X, Y) := g(\phi X, Y), X, Y \in \Gamma(TM).$$

An almost contact metric manifold  $(M, \phi, \xi, \eta, g)$  is said to be *almost cosymplectic* (resp. *almost a* -Kenmotsu) if  $d\eta = 0$  and  $d\Phi = 0$  (resp.  $d\Phi = 2a\eta \wedge \Phi$ ,  $\alpha$  being a non-zero real constant), where d is the exterior differential operator. Geometrical properties and examples of almost cosymplectic manifolds are found in [1], [2], [3], [4], [7]. The case of almost  $\alpha$ -Kenmotsu manifolds are found in [5], [6], [7].

Recently a new notion of an almost  $\alpha$ -cosymplectic manifold was introduced in [9], which is defined by

(1.1) 
$$d\eta = 0$$
,  $d\Phi = 2\alpha\eta \wedge \Phi$ 

<sup>\*</sup>The present work was supported by the Research Fund of Kyungsan University, 2001.

<sup>&</sup>quot;Faculty of Information Science, Kyungsan University, Kyungsan 712-715, Korea

for  $\alpha \in \mathbb{R}$ . This notion corresponds to an almost cosymplectic or almost  $\alpha$ -Kenmotsu manifold according to  $\alpha = 0$  or not.

In the present paper we extend this notion to that of almost f-cosymplectic manifold which is defined by

(1.2) 
$$d\eta = 0$$
,  $d\Phi = 2f\eta \wedge \Phi$ ,

where f is a function on M satisfying

(1.3) 
$$df \wedge \eta = 0$$
.

It is obvious that an almost f-cosymplectic manifold with  $f = \alpha$  constant is just almost  $\alpha$ -cosymplectic. We will see an example of an almost f-cosymplectic manifold which f is not constant.

The notion of an almost f-cosymplectic manifold is closely related to the locally conformal geometry of almost cosymplectic manifolds. It is known in [10], [7] that an almost contact metric manifold M is locally conformal almost cosymplectic if and only if there exists a 1-form  $\omega$  on M such that

(1.4) 
$$d\eta = \omega \wedge \eta$$
,  $d\Phi = 2\omega \wedge \Phi$ ,  $d\omega = 0$ .

 $\omega$  is called the characteristic form of such a manifold in the sense that if the form  $\omega$  satisfying (1.4) exists, then it is unique. We easily notice that an almost f -cosymplectic manifold is a special case of an locally conformal almost cosymplectic manifold (take  $\omega$  as  $f\eta$ ).

The present paper studies the canonical foliations of an almost f-cosymplectic manifold. The purpose of the present paper is to extend the results obtained in [8], [9].

### 2. Almost f-cosymplectic manifolds

To begin with, it is useful to give a characterization

of almost *f*-cosymplectic manifolds from the viewpoint of locally conformal geometry of almost cosymplectic manifolds. The proof is an immediate consequence of (1.4)

**Proposition 2.1** A locally conformal almost cosymplectic manifold M is almost f-cosymplectic if and only if the characteristic form of M is given by  $\omega = fn$ 

Let  $(M, \phi, \xi, \eta, g)$  be a (2n+1)-dimensional almost f-cosymplectic manifold. By virtue of Propositoin 2.1, [7] provides some formulas.

Define a (1,1)-tensor field h on M by

$$(2.1) hX: = \nabla_X \xi + f \Phi^2 X X \in \Gamma(TM),$$

where  $\nabla$  denotes the Levi-Civita connection of (M, g).

**Lemma 2.2** Let  $(M, \phi, \xi, \eta, g)$  be an almost f -cosymplectic manifold. Then

(1) the linear operator h is symmetric and satisfies  $h\Phi + \Phi h = 0$ ,  $h\xi = 0$ ,

(2)  $h = -\frac{1}{2} \Phi(L_{\xi}\Phi)$ , where L denotes the Lie derivative operator,

(3)

$$\begin{array}{ll} (\bigtriangledown_X \mathbf{\Phi}) \, Y + \ (\bigtriangledown_{\mathbf{\Phi} X} \mathbf{\Phi}) \mathbf{\Phi} Y = \\ f\{2g(\mathbf{\Phi} X, Y) \xi \ - \eta(Y) \mathbf{\Phi} X\} + \eta(Y) h \mathbf{\Phi} X. \end{array}$$

*Proof.* (1) follows from Proposition 2.1 and a result established in [7] (Lemma 3.1).

(2) The condition  $d\eta = 0$  implies

$$(2.2) \quad \nabla \xi = 0.$$

On the other hand, a general formula for  $\nabla \mathcal{D}$  in an almost contact metric manifold

([11]) yields that an almost f-cosymplectic manifold satisfies

(2.3) 
$$\nabla_{\xi} \mathbf{\Phi} = 0.$$

Then (1), combined with (2.2) and (2.3) gives rise to

$$\Phi(L_{\xi}\Phi)X = \Phi[\xi, \Phi X] - \Phi^{2}[\xi, X] 
= -\Phi h \Phi X - h X = -2hX$$

for any  $X \in \Gamma(TM)$ .

(3) is an immediate consequence of a result established in [7] (Lemma 3.2) with  $\omega = f\eta$ .

**Remark.** Lemma 2.2. (3) induces the formula (2.1). Furthermore, we also have

$$(2.4) \quad \delta \mathbf{\Phi} = 0,$$

where  $\delta$  is the codifferential operator.

# Canonical foliations of almost /-cosymplectic manifolds

Let  $(M, \phi, \xi, \eta, g)$  be a (2n+1)-dimensional almost f-cosymplectic manifold. Since  $d\eta = 0$ , the contact distribution  $D = \ker \eta$  defines a foliation F on M of codimension 1.

**Theorem 3.1** Let  $(M, \phi, \xi, \eta, g)$  be an almost f -cosymplectic manifold. Then

- (1) F is Riemannian,
- (2) F is tangentially almost Kähler,
- (3) when f=0 (resp.  $f\neq 0$ ), F is totally geodesic (resp. totally umbilic) if and only if h=0.

Proof. (1) follows from (2.2).

- (2) We note that  $\varphi \xi = 0$  and  $\varphi(\xi, X) = 0$  for each  $X \in \Gamma(TM)$ . Hence the restriction  $(g_D, \phi_D, \varphi_D)$  of  $(g, \phi, \varphi)$  to the contact dustribution D induces an almost Kähler structure for F.
- (3) A direct computation using (2.1) yields for any X,  $Y \in \Gamma(D)$

$$g(\nabla_X Y, \xi) = -g(hX - f\Phi^2 X, Y) = -g(hX, Y) - fg(X, Y),$$

which means that h=0 if and only if  $\nabla_X Y = -fg(X,Y)\xi$ . Therefore, if f=0 then F is totally geodesic. Otherwise, F is totally umbilic with mean curvature  $-f\xi$ .

Recall that an almost contact manifold  $(M, \Phi, \xi, \eta)$  is said to be *normal* if

$$N_{\boldsymbol{\phi}}(X, Y) := [\boldsymbol{\phi}X, \boldsymbol{\phi}Y] - \boldsymbol{\phi}[\boldsymbol{\phi}X, Y] - \boldsymbol{\phi}[X, \boldsymbol{\phi}Y] + \boldsymbol{\phi}^{2}[X, Y] + 2d\eta(X, Y) \hat{\boldsymbol{\varepsilon}} = 0$$

for any  $X,Y \in \Gamma(TM)$ . A normal almost f -cosymplectic manifold is called an f-cosymplectic manifold. The class of f-cosymplectic manifolds contains cosymplectic manifolds and  $\alpha$ -Kenmotsu manifolds. The following result provides a characterization of f-cosymplectic manifolds in terms of the canonical foliation F and the operator h.

**Proposition 3.2** An almost f-cosymplectic manifold M is f-cosymplectic if and only if the canonical foliation F is tangentially Kähler and h = 0.

*Proof.* It can be easily seen from Lemma 2.2 (2) that for each  $X \in \Gamma(D)$ 

(3.2) 
$$N_{\phi}(\xi, X) = -\phi[\xi, \phi X] - [\xi, X] = 2hX.$$

On the other hand, for each X,  $Y \in \Gamma(D)$ 

(3.3) 
$$N_{\varphi}(X, Y) = N_{\varphi_{n}}(X, Y),$$

where  $\Phi_D$  is an almost complex structure for F defined in Theorem 3.1. Therefore the proof is completed by (3.2) and (3.3).

Remarks. (1) Theorem 3.1 and Proposition 3.2 extend

results obtained in [8], [9].

(2) Let (N,J,G) be an almost Kähler manifold and R be the real line with coordinate t. Define an almost cosymplectic structure  $(\mathfrak{D}, \mathfrak{F}, \tilde{\eta}, \tilde{g})$  on the product manifold  $M:=N\times R$  by

$$\begin{aligned}
\widetilde{\phi}X &:= JX \quad X \in \Gamma(TN), \\
\widetilde{\phi}X &:= 0 \quad X = \frac{\partial}{\partial t}, \\
\widetilde{\xi} &:= e^{\sigma} \frac{\partial}{\partial t}, \quad \widetilde{g} &:= G + e^{-2\sigma} dt \otimes dt \\
\widetilde{n} &:= e^{-\sigma} dt,
\end{aligned}$$

where  $\sigma$  is a function on R.

Now consider the conformal change of the structure  $(\mathfrak{D}, \mathfrak{F}, \mathfrak{n}, \mathfrak{g})$  given by

(3.4) 
$$\mathbf{\Phi} := \mathbf{\Phi}, \quad \xi := e^{-\sigma} \xi, \quad \eta := e^{\sigma} \hat{\eta}, \quad g := e^{2\sigma} \hat{g}$$

Then  $(\Phi, \xi, \eta, g)$  is a (globally) conformal almost cosymplectic structure. Its characteristic form is  $\omega = f\eta$  with  $f = \sigma'$ . Therefore, Proposition 2.1 says that  $(\Phi, \xi, \eta, g)$  is almost f-cosymplectic on M. If the function  $\sigma$  is periodic, then the structure obtained can be projected to  $N \times S^1$ , where  $S^1$  is a circle. Note that  $N_{\Phi}(X, \xi) = 0$  for  $X \in \Gamma(TN)$ , so that h = 0 by means of (3.2).

The canonical foliation F consists of the leaves  $N \times \{t\}$ . It is tangentially almost Kähler and non-Kähler if N is non-Kähler. It follows from Proposition 3.2 that N is Kähler if and only if M is f-cosymplectic.

# Semi-invariant submanifolds of almost /-cosymplectic manifolds

Let N be a submanifold of an almost contact metric manifold  $(M, \Phi, \xi, \eta, g)$ . N is called a semi-invariant

submanifold if there exists a distribution  $D_N$  on N satisfying the following conditions

(4.1) 
$$\Phi D_N \subset D_N, \Phi D_N^{\perp} \subset TN^{\perp}, \xi \in \Gamma(TN^{\perp}),$$

where  $D_N^{\perp}$  is the orthogonal complementary distribution of  $D_N$  in TN. Recall the following result established in [9].

**Lemma 4.1** Let N be a semi-invariant submanifold of an almost contact metric manifold  $(M, \Phi, \xi, \eta, g)$ . The anti-invariant distribution  $D_N^{\perp}$  is integrable if and only if for  $X \in \Gamma(D_N)$  and  $U, V \in \Gamma(D_{N^{\perp}})$ ,

$$d\Phi(U, V, X) = 0.$$

**Proposition 4.2** Let N be a semi-invariant submanifold of an almost f-cosymplectic manifold  $(M, \Phi, \xi, \eta, g)$ . Then

- (1)  $D_N^{\perp}$  is integrable,
- (2) the invariant distribution  $D_N$  is minimal.

*Proof.* (1) It is easy to see from (4.1) that (1.2) implies  $d\Phi(U, V, X) = 0$  for any

 $U, V \in \Gamma(D_N^{\perp}), X \in \Gamma(D_N)$ . This proves (1) by Lemma 4.1.

(2) We need the following formulas (cf. [9]). For any  $U \in \Gamma(D_N^{\perp})$ ,  $X \in \Gamma(D_N)$ 

$$g(\nabla_X X, U) = g(A_{\Phi U} X, \Phi X) - g((\nabla_X \Phi) X, \Phi U),$$

$$g(\nabla_{\Phi X} \Phi X, U) = -g(A_{\Phi U} \Phi X, X) - g((\nabla_{\Phi X} \Phi) \Phi X, \Phi U),$$

where A denotes the Weingarten map of  $N \subseteq M$ . (4.2), together with Lemma 2.2 (3), yields

(4.3) 
$$g(\nabla_X X + \nabla_{\Phi X} \Phi X, U) = 0.$$

If we take an orthonormal frame field

 $\{E_{i,}E_{p+i}=\Phi E_{i}\},\ 2p=\dim D_{N_{i}} \text{ of } D_{N_{i}} \text{ the }$  mean curvature for  $D_{N}$  satisfies

$$x: = \frac{1}{2b} \sum (\nabla_{E_i} E_i + \nabla_{\Phi E_i} \Phi E_i)^{\perp} = 0$$

by means of (4.3).

From Proposition 4.2 we have the foliation  $F_N$ 

defined by  $D_N^{\perp}$ . Let  $\nu = \omega_i \wedge \cdots \wedge \omega_{2p}$  be the transversal volume form for  $F_N$  on N, where  $\{\omega_i\}$  is the dual frame field of an orthonormal frame field  $\{E_i, \Phi E_i\}$  of  $D_N$ . Then Proposition 4.2 says that  $d\nu = 0$  ([8], [12]). By a similar argument as in [8] we have the following result. For the proof, it suffices to notice that the restriction  $\Phi_N$  of  $\Phi$  to N is a closed 2-form satisfying

(4.4) 
$$\Phi_N^p = (-1)^p p! \nu$$
.

**Theorem 4.3** Let N be a compact semi-invariant submanifold of an almost f-cosymplectic manifold  $(M, \Phi, \xi, \eta, g)$ . Then the transversal volume form  $\nu$  defines a cohomology class

c(N): =  $[\nu] \in H^{2p}(N, R)$ . Furthermore, if  $D_N^{\perp}$  is minimal and  $D_N$  is integrable then for any  $k \in \{1, \dots, p\}$ 

(4.5) 
$$H^{2k}(N, \mathbf{R}) \neq 0$$

For example, a leaf N of the canonical foliation F discussed in section 3 is a semi-invariant submanifold with trivial anti-invariant distribution. In this case,  $F_N$  is the point foliation and  $D_N = D$  is integrable. Therefore, it holds (4.5) from Theorem 4.3. Indeed, c(N) is explicitly represented by a 2n-form  $\frac{(-1)^n}{n!} \, \varPhi_D^n$  It should be noted that  $\varPhi_D$  is harmonic by virtue of (2.4).

# 5. The transversal property for the canonical foliation $F_N$

It may be interesting to consider the problem when the canonical foliation  $F_N$  on a semi-invariant submanifold N of an almost f-cosymplectic manifold M is Riemannian. Related to this problem, we compute the Godbillon-Vey class for  $F_N$ .

In case that N is a leaf of the canonical foliation F discussed in section 3,  $F_N$  is the point foliation, so Riemannian. Thus all the secondary characteristic classes of  $F_N$  on a semi-invariant submanifold  $N \subset M$  are zero ([13], [12]). In general,  $F_N$  may be non-Riemannian. Yet for its the Godbillon-Vey class we have

**Theorem 5.1** Let N be a semi-invariant submanifold of an almost f-cosymplectic manifold  $(M, \Phi, \xi, \eta, g)$ . Then the Godbillon-Vey class  $GV(F_N)$  for the canonical foliation  $F_N$  is given by

(5.1) 
$$GV(F_N) = (2fp)^{2p+1} [\eta_N \wedge (d\eta_N)^{2p}] = 0,$$

where  $2p = \dim D_N$  and  $\eta_N$  is the restriction of  $\eta$  to N.

*Proof.* Recall the definition of the Godbillon-Vey class for  $F_N$  given by

(5.2) 
$$GV(F_N) := [\psi \wedge (d\psi)^{2p}],$$

where  $\psi$  is 1-form on N satisfying  $d\nu = \psi \wedge \nu$ . Now from (4.4) we get

$$(-1)^{p} p! d\nu = p2f(-1)^{p} p! \eta_{N} \wedge \nu.$$

Therefore, we can choose  $\psi = 2fp\eta_N$  Therefore, (5.2) yields (5.1).

#### 6. Conclusion

The main results of the present paper are as follows. One can derive several formulas in an almost f-cosymplectic manifold (section 2). These formulas enable to find the geometrical properties of the canonical foliation F defined by the contact distribution  $D = \ker \eta$ . One can prove that F is Riemannian and tangentially almost Kähler of codimension 1 and that F is tangentially Kähler if the manifold M is normal (section 3). Moreover, one can show that a semi-invariant submanifold N of such a manifold M admits a canonical foliation  $F_N$ defined by the anti-invariant distribution and a canonical cohomology class c(N) generated by a transversal volume form for  $F_N$ . In addition, one can find the conditions when the even-dimensional  $H^{2k}(N, \mathbf{R})$  of N are cohomology classes non-trivial. For example, when a leaf N of the canonical foliation F is a semi-invariant submanifold of M then c(N) is explicitly represented by  $\frac{(-1)^n}{n!} \Phi_D^n$  and  $H^{2k}(N, R) \neq 0$  for  $k = 1, \dots, n$ 

 $(2n = \dim D)$  (section 4). Finally, one can consider

the problem when  $F_N$  is Riemannian. Related to this problem, one can compute the Godbillon-Vey class for  $F_N$  (section 5).

These results extend those obtained in [8], [9] for the case of almost  $\alpha$ -cosymplectic manifolds. Similar results in the locally conformal Kähler case is found in [14]. One may expect that these results will be applied to extend the recent researches such as [2], [3] on almost cosymplectic manifolds.

#### Reference

[1] S. I. Goldberg and K. Yano, Integrablity of almost cosymplectic structures, Pacific J. Math. 31 (1969), 373-382.

- [2] D. Chinea, M. De León and J. C. Marrero, Coeffective cohomology on almost cosymplectic manifolds, Bull. Sci. Math. 119 (1995), 3-20.
- [3] L. A. Cordero, M. Fernández and M. De León, Examples of compact almost contact manifolds admitting neither Sasakian nor cosymplectic structures, Atti Sem. Mat. Fis. Univ. Modena 34 (1985-1986), 43-54
- [4] Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), 239-250.
- [5] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24(1972), 93-103.
- [6] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), 1-27.
- [7] Z. Olszak, Locally conformal almost cosymplectic manifolds, Coll. Math. 57 (1989), 73-87.
- [8] G. Pitis, Foliations and submanifolds of a class of contact manifolds, C. R. Acad. Sci. Paris 310 (1990), 197-202.
- [9] H. K. Pak, Canonical foliations of certain classes of almost contact metric structures, preprint.
- [10] I. Vaisman, Conformal changes of almost contact metric manifolds, Lecture Notes in Math. 792. Berlin-Heidelberg-New York, 1980, 435-443,
- [11] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, p146, Berlin-Heidelberg-New York, 1976.
- [12] Ph. Tondeur, Foliations on Riemannian manifolds, p247, Springer-Verlag, 1988.
- [13] F. W. Kamber and Ph. Tondeur, G-foliations and their characteristic classes, Bull. Amer. Math. Soc. 84 (1978), 1086-1124.
- [14] B. Y. Chen and P. Piccinni, The canonical foliations of a locally conformal Kähler manifold, Ann. Mat. Pura Appl. 141 (1985), 289-305.



#### 박 홍 경

1988년 경북대학교 사범대학 수학교 육과 졸업 (이학사)

1990년 경북대학교 대학원 수학과 졸 업 (이학석사)

1993년 일본 가나자와대학 대학원 졸

업, 시스템공학전공 (이학박사)

1993년 ~ 경산대학교 정보과학부 교수 :

관심분야: 기하학, 전산기하학, 지식공간이론, 수리물리학