Canonical foliations of almost f - cosymplectic structures

  • Published : 2002.09.01

Abstract

The present paper mainly treats with almost f-cosymplectic manifolds. This notion contains almost cosymplectic and almost Kenmotsu manifolds. Almost cosymplectic manifolds introduced in [1] have been studied by many schalors, say [2], [3], [4], and almost Kenmotsu manifolds introduced in [5] have been studied in [6], [7]. The present paper studies some geometrical and topological properties of the canonical foliation defined by the contact distribution of an almost f-cosymplectic manifold. The purpose of the present paper is to extend the results obtained in [8], [9].

본 논문은 주로 개 f-코심플렉틱 다양체를 다룬다. 이 개념은 개 코심플렉틱 다양체와 개 겐모츠 다양체를 포함한다. 개 코심플렉틱 다양체는 [1]에서 도입된 이래 [2], [3], [4] 등 여러 학자들에 의해 연구되어져 왔으며 개 겐모츠 다양체는 [5]에서 도입된 이래 [6], [7] 등에서 연구되어져 왔다. 본 논문에서는 개f-코심플렉틱 다양체의 접촉 초함수에 의해 정의되는 정규 엽층구조의 기하학적 성질을 연구한다. 본 논문의 목적은 [8], [9]에서 얻은 성과를 확장하는 것이다.

Keywords