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CRITICAL RIEMANNIAN METRICS
ON COSYMPLECTIC MANIFOLDS

ByunGg Hak KiMm

1. Introduction

In a Recent paper [3], D. Chinea, M. Delon and J. C. Marrero proved
that a cosymplectic manifold is formal and constructed an example
of compact cosymplectic manifold which is not a global product of a
Kaehler manifold with the circle. In this paper we study the compact
cosymplectic manifolds with critical Riemannian metrics.

Let M be an m-dimensional compact orientable Riemannian man-
ifold and p(M) be the set of C™ Riemannian metric G on M satis-
fying [,,dVe = 1, where dVg is the volume element of M measured
by G. For an element G in pu(M), we assume that f(k) is a scalar
field on M determined by G as the contraction of a tensor product of
the curvature tensor. Then Huy(G] = [, f(k)dVs defines a mapping
Hpy o p(M) — R. In this case, a critical point of Hjys is called a critical
Riemannian metric with respect to the field f(k) and denoted by Gg.

The following four kinds of critical Riemannian metrics have been

studied by M. Berger [1] and Y. Muto {7] :

AM[G}z/ K dVg, BM[G]:] K? dVg,
M M

CulGl=[ S*dVg, Du|G]= / R? dVg,
M M
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where R, S and I are the Riemannian curvature tensor, Ricci curva-
ture tensor and scalar curvature respectively. The equations of the
critical Riemannian metrics are written as follows:

L1 Aji =CaGji, Bji = CpGj;,
(1) Cji =CcGji, Dji = CpGji,

where Ca,Cp,Cc,Cp are undetermined constants and Aj;, Bji, Cjs
and D;; are given by

1
(1.2) Aji=-Sji+ §K Gji,

1
(1.3) B]‘,' = QVJ'V,'I\’ — Z(AI\’)Gﬁ - 2K Sj,‘ + 51\"2 Gj,‘,

Cji =V, ViK — V,VS;; — %(AK)G,,

(1.4) ]
= 2R;kniS*" + =S S* Gy,
Dy; =2V1-V.-K - 4VkV’“SJ~,- + 4Sjk5ik
(1.5) 1

— 4RjkniS*™ — 2R R + = Repim RFM™ G4,

2
where V is the Riemannian connection and AK is the Laplacian of K
with respect to G on M.

2. Cosymplectic Bochner curvature tensor

Let M be an m-dimensional cosymplectic manifold with structure
(¢,€,m,G), that is, a manifold M which admits a 1-form 7, a vector
fields &, a metric tensor G satisfying

77(5) =1, ¢2X =-X+ n(X)ﬁa ¢& =0,
G(¢&, X) = n(X), G(6X,9Y) = G(X,Y) — n(X)n(Y)
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and ®(X,Y) = G(¢X,Y) and 5 are both closed for arbitrary vector
fields X and Y on M. The relations

VeK=0 and R(X,Y)=0

are easily verified.
The cosymplectic Bochner curvature B is defined by

B(X.,Y,Z,U)
=R(X,Y,Z,U) + {G(X,U) — n(X)n(U)} L(Y, Z)

—{G,U) = 9(Y)n(U)}L(X, Z) + {G(Y, Z) — n(Y)n(Z)} L(X, V)

—{G(X,Z) = n(X)n(Z)}L(Y,U) + (X, U)M(Y, Z)

— (Y, U)M(X,Z) + ®(Y,Z)M(X,U) - ¥(X, Z)M(Y,U)

—2{®(Z,U)M(X,Y) + &(X,Y)M(Z,U)},

where we have put

L(GY) =~ S(XLY) + G, Y) = (X )n(¥)},
M(X,Y)=—L(X,4Y) and
K
T T4 (m+1)

We assume that the cosymplectic Bochner curvature B vanishes iden-
tically on M, then we get

(2.1)
R(X,Y,Z,U)

:m—i-g [S(Y, Z){G(X,U) — n(X)n(U)}

=S(X, ){G(Y,U) = n(Y)n(U)}

+S(X,UNG(Y, Z2) = n(Y)n(Z)} - S(Y,UNG(X, Z) — n(X)n(2)}]
- T O 2) = a2 HEK ) = (D)
~{G(X, Z2) = (X m(Z)H{G(Y.U) — (Y )n(U)}]

— ®(X,U)M(Y,Z) + (Y, U)M(X, Z) — &(Y, Z)M(X,U)
+@(X, Z)M(Y,U) + 2{®(Z,U)M(X,Y) + ®(X,Y)M(Z,U)}.
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LEMMA 2.1. If the cosymplectic Bochner curvature B of the cosym-
plectic manifold M vanishes identically and M is Einstein, then M is
locally Euclidean.

Proof. From (2.1), we easily get

1 4
S5(X,Y)={=G(X,)Y) - ——n(X)n(Y) } K.
() = {6 V) ~ e (On(Y )
This equation implies X = 0 and that § = 0. Then we get R =0 by
use of (2.1).
If the scalar curvature vanishes on M, then, from (2.1), we have

(2.2)
R(X,Y,2,U)

——— (S, 2){G(X,U) — n(X)n(V)

—S(X, Z{G(Y,U) - (Y )n(U)}

+S(X,UNG(Y, 2) = n(Y)n(2)} - S(Y,UNG(X, Z) — n(X)n(2))]

—®(X, UMY, Z)+ (Y, U)M(X,Z) - &(Y,Z)M(X,U)

+ (X, Z2)M(Y,U) + 2{®(Z,U)M(X,Y)+ (X, YIM(Z,U)).
Thus we can state

LEMMA 2.2. If the cosymplectic Bochner curvature B and the scalar
curvature vanish on the cosymplectic manifold M, then the curvature
tensor on M is of the form (2.2).

3. Cosymplectic manifold with critical Riemannian metrics

Let M be an m-dimensional cosymplectic manifold. If the Riernann-
ian metric G is a critical Riemannian metric GB,Gc or Gp, then, by
use of (1.1)-(1.5), the undetermined constants Cg,Cc and Cp given
by (1.1) are determined as follows :

1
(3.1) Cp =5 K* - 2AK,

1 i 1,
(3.2) Cc =§Sj,'5 -§AI\,

1
(3.3) CD=§R“MR“M.
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From (1.1), (1.3) and (3.1), we get
VxVyK = K S§(X,Y).

Then

/ K? dVg, = / AK dVg,.
M M

Thus, applying the Green’s Theorem, we have

PROPOSITION 3.1. In a compact cosymplectic manifold M,G is a
critical Riemannian metric Gg on M if and only if the scalar curvature
vanishes.

By use of (1.4) and (3.2), we have

PROPOSITION 3.2. In a cosymplectic manifold M,G is a critical
Riemannian metric G¢ on M if and only if the Ricci curvature vanishes.

If the Riemannian metric G on M is the critical Riemannian metric
G p, then we obtain

AK = —Rkj,‘thjih
by use of (1.5) and (3.3). Thus we have

PROPOSITION 3.3. In a compact cosymplectic manifold M,G is a
critical Riemannian metric Gp on M if and only if M is locally Eu-
clidean.

From (2.1), we easily see that the cosymplectic manifold with van-
ishing cosymplectic Bochner curvature is locally Euclidean if the Ricci
curvature vanishes. Moreover, it is well known that if G is a critical
Riemannian metric G 4, then G is an Einstein metric. From these facts
and Lemma 2.1, Propositions 3.2 and 3.3, we have

PROPOSITION 3.4. The compact cosymplectic manifold with van-
ishing cosymplectic Bochner curvature is locally Euclidean if and only
if G is a critical Riemannian metrics G4 or G¢ or Gp.
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4. Critical Riemannian metrics in the fibred Riemannian
space

Let {M,B,G,x} be a fibred Riemannian space, that is, {M,G}
is an m-dimensional total space with projectable metric G, B an n-
dimensional base space and 7 : M — B the projection with maximal
rank n. The fibre passing through a point ¢ € M becomes an p(= m —
n)-dimensional submanifold of M, which is denoted by F, or generally
F. Throughout this section, the ranges of the indices are as follows :

hai’jv kvl =1,2,---,m,
a,b,C,d’e = 1,2,... ,n,
CV’/H’77636 :n+1,“‘ ,Tl‘—f—p: m,
unless stated otherwise. )
Let {E*, C*} be dual to the frame {Ej, Co} of M and denoting Rkj.'h

components of the curvature in M, we have the structure equation as

follows (2, 4, 5, 8] :

(4.1) Ry = Raet® — Ly" Loy + L2 Ly + 2Ly Ly’
(42) Rdyclf - th ab + Y Ldb + Ld -yLeb + h-y dhe b

(4.3) Révg = Ry, § + hsgh,% = hghs’,

where R, * and R 4§ are the components of the curvature in B and
F respectively, h = (hBa”) and L = (L_*) are the components of

the second fundamental tensor and normal connection of each fibre F
respectively, and we have put
(lcb "C( (Ed’ E )Eb Ea
Rd-yb :G(R(E(la C“I)Ebv ce )7
Rs. 8 =G(R(Cs,C.)C5,C),
*vdhﬂub :adhﬂab - F;bhﬂae + Qdfﬂ'h/;b - Qdﬁ;hfab’
**V‘YLC?JY :0dhcba - scLeb Fecheﬂ + Q ”L
QC,U —P B ha h/3 cs



Critical Riemannian metrics on cosymplectic manifolds 559

P g are local function related to L¢, CP = PdaﬂEd and Pj, is the
Christoffel symbol induced by the metric in B.

Denoting by S ;i components of the Ricci tensor in M, then we have
(2, 4, 5, 8]

(4.4)

Sy = S(E., Ey) =S — 2L, L,¢, — hst b5 + %(*vch;,, +*Vh,f),
(4.5)

Sop = 8(Cy, Eb) =*"Veh Sy + "V o hy' L + *veL,,f —2h.f L.,

(4.6) S48 =8(C1,Cp) = Syp — hoshl. +*Vehy5 — LS LSO,

where Sq; and S.,g are the components of the Ricci tensor in B and F'
respectively and we have put

“*Vsh,§ = dsh g —T5 kG —Tsght + Loh g

and FZa is the Christoffel symbol induced by the metric in F.

Let K, Kp and K be the scalar curvatures of M, B and each fibre
F respectively, we have {2, 4, 5, §]
(47 K=Kp+ Kp — Lo L — h.,gﬁh'me ~hYhP 42 *Veh o

vy e''B e

The present author [5] proved that

THEOREM 4.1. The almost contact metric structure (¢,€,1,G) on
M is cosymplectic, then
(1) B is Kaehlerian with a comnplex structure J,
(2) F is cosymplectic with a cosymplectic structure (¢,£,7,9),
(3) L=0,
(4) each fibre is minimal in M.

It is well known that [4]

LEMMA 4.2. If the structure tensor h and L vanish identically on
M, then M is locally a Riemannian product space of the base space

and a fibre.

Assume that the cosymplectic Bochner curvature vanishes on the
compact cosymplectic manifold M and the metric G on M is a critical
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Riemannian metric G4 or G¢ or Gp, then, from the Proposition 3. 4,
M is locally Euclidean. So that the Theorem 4. 1 and (4.1)-(4.3) imply
R, =0, h =0 and Rhg = 0. Taking account of the Proposition
3.4 and Lemma 4. 2, we can state

THEOREM 4.3. Let the fibred Riemannian space M be a compact
cosymplectic manifold with vanishing cosymplectic Bochner curvature.
If the metric on M is a critical Riemannian metric G4 or G¢ or Gp,
then M is locally the product of the two locally Euclidean spaces.

Next, if the cosymplectic Bochner curvature vanishes on M and the
scalar curvature vanishes, then the curvature of M is determined as
(2.2). By use of the Theorem 4. 1 and (4.1), we get
(4.8)

(m + 3)Ryes® =(Seb — hpach® )68 — (Sap — hpaah?2)s?
+(S4° = hgaah®*®)gep — (S.* = hgach®*)gas
= (Sece — hﬂochﬁi)']be']da + (See — hﬂaehﬂZ)JbeJca
— (Sde = Ppaah®®) T b + (Sce — hpach®S) T Jas
+ 2(Sae — hpaahP)T % + 2(She — hpashP) T Iy,

where g is the metric components of B. From (4.8), we obtain

28 =~ (m + l)hgachﬂ"b — hﬁaehﬂ"’egcb

(4.9) + 3(‘5(16 - hgadhﬁoé).]be.fcd + I\’Bgcb
and that
(4.10) (n+1)Kp=(m+n+ 4)hﬂabhﬂ°‘b

Moreover, by use of (4. 7), we get
(4.11) ‘Kp + K = hgaph?.
On the other hand, the Theorem 4.1 and (4. 2) imply

4.12 n 4+ 4)h abhﬂ"b:—p——lI\;’B~nKp.
3
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Taking account of (4. 11) and (4. 12), we obtain

2(n +2)
4.1 Kp =——"hgaphP*®
(4.13) VB =7 hoash™,
- _——(777,—}-3) Bab
(4.14) Kr =7 —oin hgabh
when p #n + 1.

If we substitute (4.13) into (4.10), then p(n + 3)hgash?*® = 0 so
that 2 = 0 and hence Kg = 0 and Kr = 0.

In the case of p = n + 1, (4.12) is reformed to
(4.15) (n 4+ 4)hpash?*® = —n(Kp + KF).

The equations (4.11) and (4.15) give rise to 2(n + 2)hgash?® = 0,
that is A = 0. Then (4.10) and (4.11) imply Kp = 0 and Kr = 0.

Thus we have

LEMMA 4.4. Let M be the fibred Riemannian space with cosym-
plectic structure. If the cosymplectic Bochner curvature and the scalar
curvature on M vanish identically, then M is locally the product of B
and F',| and the scalar curvatures of B and F vanish identically.

Considering the Theorem 4.1, Lemma 4.4 and (4.3), it is reduced to
(m + 3)R6'yﬂa
=Syp(88 — 116€%) — S55(65 — 114" + S5%(Gp — 714718)
— 5.%(gsg — Tisp) — SA,A&,@,\@“ + 55%%57"
— 8520 $5 + Sy26° b5 + 25510165 + 25520 b5,
where g is the induced metric on F. From (4. 16), we easily see that
Syp = 0 and that Ry & = 0.

Furthermore, if we consider (4.9) and Theorem 4.1, then S = 0 and
that R; 3 = 0 by use of (4.8). Thus taking account of the Theorem 4.3
and Lemma 4.4, we have

(4. 16)

THEOREM 4.5. Let M be the fibred Riemannian space with cosym-
plectic structure. If the cosymplectic Bochner curvature and the scalar
curvature on M vanish, then M is locally product of the two locally
Euclidean spaces.

The following fact can be directly reduced from Proposition 3. 1.
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COROLLARY 4.6. If M is the compact cosymplectic manifold with
vanishing cosymplectic Bochner curvature and the metric G on M is
the critical Riemannian metric Gpg, then M is locally product of the
two locally Euclidean spaces.

Finally, combining Theorem 4.3 and Corollary 4.6, we have

THEOREM 4.7. If M is the compact cosymplectic manifold with
vanishing cosymplectic Bochner curvature and the metric G on M is
one of the critical Riemannian metrics G4,Gp,Gc and Gp, then M
is locally product of the two locally Euclidean spaces.
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