• Title/Summary/Keyword: bulky structure

Search Result 114, Processing Time 0.039 seconds

QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1

  • Pasha, F.A.;Muddassar, M.;Jung, Hwan-Won;Yang, Beom-Seok;Lee, Cheol-Ju;Oh, Jung-Soo;Cho, Seung-Joo;Cho, Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.647-655
    • /
    • 2008
  • Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR (quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best-fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM-based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group around ring B may enhance the inhibitory activity.

Self Oscillation DC/DC Converter with High Voltage Step Up Ratio (고전압 변환비의 자려 발진 DC/DC Converter)

  • Jung, Yong-Joon;Han, Sang-Kyoo;Hong, Sung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.220-227
    • /
    • 2009
  • A self oscillation DC/DC converter which has a very desirable characteristics of the high input-output voltage conversion ratio for high voltage DC power supply applications is proposed in this paper. The proposed converter is composed of one power switch, one inductor, several capacitors and diodes. Compared with conventional high-voltage DC/DC converters, it performs the high- voltage power conversion using the inductor instead of the bulky step-up transformer. Therefore, it can reduce the size of magnetic device and save the cost. Moreover, since it needs no control IC by using self oscillation circuit and has lower voltage stress on output diodes, it features a lower cost, simpler structure and more improved performance. Finally, a comparative analysis and experimental results are presented to show the validity of the proposed converter.

A Gridless Area Router for Multichip Module Design (다중칩 모듈 설계를 위한 Gridless 배선기)

  • Lee, Tae-Sun;Rim, Chong-Suck
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.9
    • /
    • pp.28-43
    • /
    • 1999
  • In this paper, we present a gridless router for MultiChip Modules (MCM). Because our router uses corner stitching data structures, not a routing grid, to represent the routings status, it allows arbitrary location of pins, and routes variable-width wires, without a considerable waste of area from bulky vias. A routing speed is a very important factor because a gridless routing approach is known its computation is hard and complex, and MCM routing problem has so large routing area and layers. Our router completes the routing faster than the most of previously reported grid-based routers, with comparable routing result, by using SEGRAs routing algorithm whose very fast speed is proved, and the characteristics of the effective data structure.

  • PDF

Versatility of Modified Nasolabial Flap in Oral and Maxillofacial Surgery

  • Mitra, Geeti Vajdi;Bajaj, Sarwpriya Sharma;Rajmohan, Sushmitha;Motiwale, Tejas
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.4
    • /
    • pp.243-248
    • /
    • 2017
  • Background: To evaluate the versatility and reach of modified nasolabial flap used in reconstruction of defects created in and around the oral cavity. Methods: A total number of 20 cases were selected. Out of which 13 were males and 7 females. The age of these patients ranged from 24-63 years. 29 modified nasolabial flaps were raised in twenty patients. Based on clinical and histopathological examination, out of 20 patients, 14 patients were diagnosed with oral submucous fibrosis, 3 with verrucous carcinoma, 1 with squamous papilloma, 1 with oro-antral fistula and 1 with traumatic loss of lower lip. Results: Minimum preoperative interincisal distance (IID) was 0 mm and maximum was 15 mm with mean of $6.00{\pm}4.76mm$ in patients with oral submucous fibrosis and 12 months postoperatively minimum IID was 16 mm and maximum was 41 mm with mean of $28.00{\pm}8.96mm$. In one case, dehiscence (3.4%) was noted on the anterior tip for which tip revision was done. Bulky appearance of the flap intraorally was observed in 2 cases (6.9%). Five (17.2%) among the 29 flaps had visible scar at the donor site postoperatively up to 3 months. Conclusion: Numerous reconstructive techniques have been employed in the reconstruction of small to intermediate sized defects of oral cavity. Modified nasolabial flap is a versatile flap which has robust vascularity and can be successfully used with minimal complications. It can be rotated intraorally to extend from the soft palate to the lip. Thus, it can be used efficiently to treat the small defects of the oral cavity as well as recreating lost lip structure.

Zero-Current Switching LLC Resonant Post-Regulator for Independent Multi-Output (독립된 다중출력을 위한 영전류 스위칭 LLC 공진형 Post-Regulator)

  • Cho, Sang-Ho;Yoon, Jong-Kyu;Roh, Chung-Wook;Hong, Sung-Soo;Kim, Jong-Hae;Lee, Hyo-Bum;Han, Sang-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • A new zero-current switching LLC resonant post-regulator for multi-output power system is proposed in this paper. A conventional LLC resonant converter employs extra non-isolated DC/DC converters to obtain tight-regulated multi-slave output voltages. Therefore, it has several serious problems such as a poor efficiency and high cost of production. The proposed post-regulator features low voltage and current stress across the output rectifier diodes and power switches. Moreover, the proposed post-regulator requires only one power switch instead of the bulky and expensive non-isolated DC/DC converter. Therefore, it features a simple structure and lower cost. Especially, since the proposed post-regulator can ensure the ZCS of all power switches, it has very desirable advantages such as more improved EMI characteristics and reduced switching losses. Finally, to confirm the operation, validity, and features of the proposed circuit, experimental results from a proposed zero-current LLC resonant post-regulator are presented.

THE EFFECT OF GENETIC VARIATION IN THE DNA BASE REPAIR GENES ON THE RISK OF HEAD AND NECK CANCER (DNA 염기손상 치유유전자의 변이와 두경부암 발생 위험성)

  • Oh, Jung-Hwan;Yoon, Byung-Wook;Choi, Byung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.509-517
    • /
    • 2008
  • DNA damage accumulates in cells as a result of exposure to exogenous agents such as benzopyrene, cigarette smoke, ultraviolet light, X-ray, and endogenous chemicals including reactive oxygen species produced from normal metabolic byproducts. DNA damage can also occur during aberrant DNA processing reactions such as DNA replication, recombination, and repair. The major of DNA damage affects the primary structure of the double helix; that is, the bases are chemically modified. These modification can disrupt the molecules'regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. DNA repair genes and proteins scan the global genome to detect and remove DNA damage and damage to single nucleotides. Direct reversal of DNA damage, base excision repair, double strand break. DNA repair are known relevant DNA repair mechanisms. Four different mechanisms are distinguished within excision repair: direct reversal, base excision repair, nucleotide excision repair, and mismatch repair. Genetic variation in DNA repair genes can modulate DNA repair capacity and alter cancer risk. The instability of a cell to properly regulate its proliferation in the presence of DNA damage increase risk of gene mutation and carcinogenesis. This article aimed to review mechanism of excision repair and to understand the relationship between genetic variation of excision repair genes and head and neck cancer.

Media Characteristics of PVA-derivative Hydrogels Using a CGA Technique (CGA 제조기법을 응용한 PVA 하이드로젤의 담체 특성)

  • Yoon, Mi-Hae; Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.299-308
    • /
    • 2009
  • We manufactured PVA-derived hydrogels using a foam generation technique that has been widely used to prepare colloidal gas aphrons(CGA). These gels were differentiated to the conventional gels such as for medical or pharmaceutical applications, which have tiny pores and some crystalline structure. Rather these should be used in de-pollution devices or adhesion of cells or biomolecules. The crosslinkers used in this work were amino acid, organic acid, sugars and lipids(vitamins). The structures of the gels were observed in a scanned electron microscope. Amino acids gels showed remarkably higher swelling ratios probably because their typical functional groups help constructing a highly crosslinked network along with hydrogen bonds. Boric acid and starch would catalyze dehydration while structuring to result in much lower water content and accordingly high gel content, leading to less elastic, hard gels. Bulky materials such as ascorbic acid or starch produced, in general, large pores in the matrices and also nicotinamide, having large hydrophobic patches was likely to enlarge pore size of its gels as well since the hydrophobicity would expel water molecules, thus leading to reduced swelling. Hydrophilicity(or hydrophobicity), functional groups which are involved in the reaction or physical linkage, and bulkiness of crosslinkers were found to be more critical to gel's cross linking structure and its density than molecular weights that seemed to be closely related to pore sizes. Microscopic observation revealed that pores were more or less homogeneous and their average sizes were $20{\mu}m$ for methionine, $10-15{\mu}m$ for citric acid, $50-70{\mu}m$ for L-ascorbic acid, $30-40{\mu}m$ for nicotinamide, and $70-80{\mu}m$ for starch. Also a sensory test showed that amino acid and glucose gels were more elastic meanwhile acid and nicotinamide gels turned out to be brittle or non-elastic at their high concentrations. The elasticity of a gel was reasonably correlated with its water content or swelling ratio. In addition, the PVA gel including 20% ascorbic acid showed fair ability of cell adherence as 0.257mg/g-hydrogel and completely degraded phenanthrene(10 mM) in 240 h.

Effects of Structure of the Bridge on Polymerization Behavior of Dinuclear Constrained Geometry Catalysts and Properties of Ethylene-Styrene Copolymers (다리리간드의 구조가 이핵 CGC의 중합 특성과 생성된 에틸렌/스티렌 공중합체에 미치는 영향)

  • Pham, Nhat Thanh;Nguyen, Thi Dieu Huyen;Thanh, Nguyen Thi Le;Noh, Seok-Kyun
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2011
  • Polymerization properties of six dinuclear constrained geometry catalysts (DCGC) were investigated. The different length bridges of three catalysts were para-phenyl (Catalyst 1), para-xylyl (Catalyst 2), and para-diethylene phenyl (Catalyst 6). The other three DCGC have the same para-xylyl bridge with the different substituents at the phenyl ring of the bridge. The selected substituents were isopropyl (Catalyst 3), n-hexyl (Cataylst 4), and n-octyl (Catalyst 5), It was found that the longer catalyst not only exhibited a greater activity but also prepared a higher molecular weight copolymer. The catalyst 3 having a bulky isopropyl substituent revealed the lower activity but formed the highest molecular weight polymer comparing with the other alkyl substituted DCGCs. These results were able to be understood on the basis of the electronic and steric characteristics of the bridge. This study confirms that the control of the bridge structure of DCGC may contribute to control the microstructure of polymers.

Comparative molecular field analysis (CoMFA) and holographic quantitative structure-activity relationship (HQSAR) on the growth inhibition activity of the herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives (제초성 3-Phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole 유도체들의 생장 저해활성에 관한 비교 분자장 분석 (CoMFA)과 분자 홀로그램 구조-활성관계 (HQSAR))

  • Sung, Nack-Do;Lee, Sang-Ho;Song, Jong-Hwan;Kim, Hyoung-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.108-116
    • /
    • 2003
  • A series of new quinclorac family, herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives as substrate were synthesized and their growth inhibition activity $(pI_{50})$ against root and shoot of rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) were determined. And then comparative molecular field analysis (CoMFA) and molecular holographic quantitative structure- activity relationship (HQSAR) were compared in terms of their potential for predictiability. The statistical results were suggested that HQSAR based model had better predictability than CoMFA model. The selective factors to remove barnyard grass take electron withdrawing groups which can be created positive charge and steric bulky on the phenyl ring. Results revealed that the unknown 2,6-dichloro-substituent, U5 and 2,4,6-trichloro-substituent, U6(${\Delta}pI_{50}$=CoMFA: 1.18 & HQSAR: 1.82) were predicted as compound with higher activity and selectivity.

Chemo-Mechanical Analysis of Bifunctional Linear DGEBA/Linear Amine (DDM, DDS) Resin Casting Systems (DGEBA/방향족 아민(DDM, DDS) 경화제의 벤젠링 사이의 관능기 변화가 물성 변화에 미치는 영향에 대한 연구)

  • 명인호;정인재;이재락
    • Composites Research
    • /
    • v.12 no.4
    • /
    • pp.71-78
    • /
    • 1999
  • To determine the effect of chemical structure of linear amine curing agents on thermal and mechanical properties, standard epoxy resin DGEBA was cured with diaminodiphenyl methane (DDM), diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work, the effect of aromatic amine curing agents. In contrast, the results show that the DGEBA/DDS cure system having the sulfone structure between the benzene rings had higher values in the conversion of epoxide, density, shrinkage (%), glass transition temperature, tensile modulus and strength, flexural modulus and strength than the DGEBA/DDM cure system having methylene structure between the benzene rings, whereas the DGEBA/DDM cure system presented higher values in the maximum exothermic temperature, thermal expansion coefficient, and thermal stability. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property and stem from the effect of the conversion ratio of epoxide group. The result of fractography shows that the each grain size of the DDM/DGEBA system with feather-like structure is larger than that of the DDS/DGEBA system.

  • PDF