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Microsomal prostaglandin E2 synthase (mPGES-1) is a potent target for pain and inflammation. Various QSAR 
(quantitative structure activity relationship) analyses used to understand the factors affecting inhibitory potency 
for a series of MK886 analogues. We derived four QSAR models utilizing various quantum mechanical (QM) 
descriptors. These QM models indicate that steric, electrostatic and hydrophobic interaction can be important 
factors. Common pharmacophore hypotheses (CPHs) also have studied. The QSAR model derived by best- 
fitted CPHs considering hydrophobic, negative group and ring effect gave a reasonable result (q2 = 0.77, r2 = 
0.97 and Rtestset = 0.90). The pharmacophore-derived molecular alignment subsequently used for 3D-QSAR. 
The CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecular Similarity 
Indices Analysis) techniques employed on same series of mPGES-1 inhibitors which gives a statistically 
reasonable result (CoMFA; q2 = 0.90, r2 = 0.99. CoMSIA; q2 = 0.93, r2 = 1.00). All modeling results (QM- 
based QSAR, pharmacophore modeling and 3D-QSAR) imply steric, electrostatic and hydrophobic 
contribution to the inhibitory activity. CoMFA and CoMSIA models suggest the introduction of bulky group 
around ring B may enhance the inhibitory activity.
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Introduction

Prostaglandin (PG),1 are important mediators of various 
physiological processes such as regulation of gastrointe
stinal, renal and blood homeostasis. On the other hand, they 
also act as potent mediator of inflammation and fever. They 
acts as a biological mediator to produce signals in the human 
body that in turn induce pain and inflammation. There are 
three forms of prostaglandin E synthase (PGES), namely, 
microsomal prostaglandin E2 synthase-1 (mPGES-1), micro
somal prostaglandin E2 synthase-2 (mPGES-2) and cytosolic 
PGES. The pathway linkage preference of mPGES-1, 
mPGES-2 and cPGES is, both COX-1 and COX-2 respec- 
tively.2 The mPGES-1 is an important enzyme because it 
catalyzes the conversion of prostaglandin endoperoxide 
(PG) H2 to PGE2. PGE2 in turn controls biological activities 
such as relaxation and contraction of muscles. There are 
several reported compounds which act as inhibitors of 
mPGES-1.3,4 Recently, a series of MK886 compounds also 
showed selectivity and higher activity against the inducible 
mPGES-1 with the lowest IC50 value found being 3 nM.5 
The pharmacophore based QSAR,6-9 QM based QSAR10,11 
and 3D QSAR12-17 shown good predictivity for other data
sets. The current study deals the molecular modeling of 
MK886 analogues with mPGES-1 to access further possi
bility of improved ligands. Specifically, QM-based QSAR, 
pharmacophore-based QSAR and 3D-QSAR (CoMFA and 
CoMSIA)18-20 have been performed to study MK886 series.

Materi지 and Methods

Data sets. Thirty-two MK886 derivatives5 were taken 

from literature with their biological activities in terms of 
IC50 values. The IC50 values, i.e., the concentration (卩M) of 
inhibitor that produces 50% inhibition of mPGES-1 were 
converted into pIC50 (-logIC50) as reported in Table 1.

Quantum mechanical QSAR. The quantum mechanical 
descriptors like chemical potential (0),21 electrophilicity 
index ("),9,22 electrophilic frontier densities,23 molar refracti
vity (MR)24,25 and solvent assessable surface area (SASA)26 
have been considered. Recently Parr et al. define the 
electronegativity21 and chemical potential as equation (1),

X = 기丄 = -(dE/ a N )v(r) (1)
Where E is total energy, N is number of electrons of the 
chemical species and V) is external potential. According to 
the Koopman’s theorem27 the operational definitions of 
electro negativity or chemical potential may be given as 
equation (2)

(2)X = -A = 2 3lumo + £homo )

Fukui et al. proposed the frontier electron density23 for the 
electrophilic attack at the rth atom in molecule f") which 
may be written as equation (3)

f (E)=丿"2 + 明2 e~D '寫 

-------1 , —D\為1 + e
(3)

Where △為is energy difference between the two orbital in 
units of ”, C?) and C?) are the coefficient of LCAO MO at 
rth atom corresponding to the highest and next orbital 
respectively, D is constant which determines the degree of 
contribution of lower MO to the frontier electron density.
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Table 1. Indole derivatives from MK886 compound as inhibitors of mPGES-1

aIC50 = 50% inhibition (〃M) to mPGES-1 enzyme, pIC50 = -log IC50. * = included in the test set of compounds

No. Structure R1 R2 R3 IC50 pIC50
1 A CH2(4-Cl-Ph) COOH S-tertBu 1.6 —0.204
2* A H COOH S-tertBu 10 —1.041
3* A Me COOH S-tertBu 10 —1.041
4* A CH2(CH=CH2) COOH S-tertBu 6.7 —0.826
5 A (CH2)3Ph COOH S-tertBu 3.2 —0.50
6 A CH2(4-Cl-Ph) COOMe S-tertBu 7.2 —0.857
7 A CH2(4-Cl-Ph) CONH2 S-tertBu 10 —1.041
8 A CH2(4-Cl-Ph) COOH Ph 6.4 —0.806
9* A CH2(4-Cl-Ph) COOH OPh 0.65 0.187

10* A CH2(4-Cl-Ph) COOH CH2(4-tertBu-Ph) 0.29 0.538
11 A CH2(4-Cl-Ph) COOH CO(2-Me-Ph) 0.9 0.046
12 A CH2(4-Cl-Ph) COOH COCH2S-tertBu 0.26 0.585
13 A CH2(4-Cl-Ph) COOH COCH2-tertBu 0.25 0.602
14 A CH2(4-Cl-Ph) COOH Me 1.1 —0.041
15 B H iso-propyl — 4.3 —0.633
16 B H H — 3.2 —0.505
17 B F H - 2.6 -0.415
18 B tert-butyl H — 0.33 —0.481
19* B Ph H — 0.6 0.222
20 C Ph H — 0.16 0.796
21* C H Ph — 0.016 1.796
22 C Cl Ph — 0.022 1.658
23* C F Ph — 0.007 2.155
24 C F 1,3-pyrazinyl — 0.032 1.495
25* C F 3-pyridinyl — 0.012 1.921
26 C F 2-MeO-Ph — 0.005 2.301
27 C F 2-Cl-Ph — 0.004 2.398
28 C F 2-F-Ph — 0.008 2.097
29* C F 2-MeCO-Ph — 0.006 2.222
30 C F 2-Me-Ph — 0.003 2.523
31 C F 3-Me-Ph — 0.033 1.481
32 C F 4-Me-Ph — 0.031 1.509

The molar refractivity is a constitutive-additive property 
that is calculated by the Lorenz-Lorentz formula24,25 as given 
in equation (4)

(n2- 1 x MW) MR - - ---- -------------
(n + 2 x d)

(4)

Where MW is the molecular weight, n is the refraction index 
and r the density, and its value depends only of the wave 
longitude of the light used to measure the refraction index.

Solvent assessable surface area (SASA). The molecular 
surface is defined in COSMO26 as the sum of overlapping 
van der Waals radii, R” , about each atom, a. The solvent 
approximated as a sphere of radius RSolv. The surface 

available to the solvent's centers is therefore given as the 
surface defined by the sum of overlapping radii, Ra, where

Ra = RvadW + RSolv (5)

The effective charges, which are responsible for the dielec
tric screening, will not be located at the centers of solvent 
molecules but instead located at distance, Ssc from the 
molecular center. The solvent accessible surface is then 
defined by the sum of overlapping radii, R；, where

R*a = Ra -产 (6)

The solvent assessable surface area calculated by using 
AM1 ‘COnductor-like Screening MOdel’ (COSMO). Mole
cular geometry optimization carried out by AM1 semi 
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empirical method in conjunction with molecular mechanics 
using CAChe pro software.

Multiple Linear Regression An지ysis (MLR). MLR 
analyses performed using SPSS software. The quantum 
mechanical descriptors used as independent variables and 
the PIC50 values as the dependent variable. In the statistical 
analyses, the systematic search performed to determine the 
significant descriptors. In order to minimize the effect of co
linearity and to avoid redundancy correlation matrix 
developed with a cutoff value of 0.6 and the variables 
physically removed from the analysis which shows exact 
linear dependencies between subsets of the variables and 
multi-colinearity (high multiple correlations between subsets 
of the variables). In order to explore the reliability of the 
proposed model we used the crossvalidation method. Pre
diction error sum of squares (PRESS) is a standard index to 
measure the accuracy of a modeling method based on the 
crossvalidation technique. The r2cv calculated by using 
equation-7 based on the PRESS and SSY (Sum of squares of 
deviations of the experimental values from their mean).

2 PRESS
喝=1 - —SS厂=1

n 2

、£ C^exp — ypred)
i = 1----------------------n

2 Oexp— y )2
i = 1

(7)

Pharmacophore Based QSAR

Generation of the Common Pharmacophore Hypothe
sis (CPH). The common pharmacophore hypotheses were 
generated using PHASE.28 Conformers were generated by 
MCMM/LMOD with OPLS-2005 force field. A set of con
formers for each molecule with maximum energy difference 
of 10 kcal/mol relative to global energy minima were retain
ed. Pharmacophore features; hydrogen bond acceptor(A), 
hydrogen bond donor (D), hydrophobic group (H), negative
ly charged group (N), positively charged group(P), and 
aromatic ring (R) were defined by a set of chemical structure 
patterns as SMARTS queries and assigned one of three 
possible geometries, which define physical characteristics of 
the site:

Point - the site is located on a single atom in the SMARTS 
query.

Vector - the site is located on a single atom in the 
SMARTS query, and assigned directionality according to 
one or more vectors originating from the atom.

Group - the site is located at the centroid of a group of 
atoms in the SMARTS query. For aromatic rings, the site 
includes directionality, defined by a vector that is normal to 
the plane of the ring.

The final size of pharmacophore box was 1 A, which 
governs the tolerance on matching; the smaller the box size, 
the more closely pharmacophores must match. Any single 
pharmacophore in the group could ultimately become a 
CPH. The analyses indicate that maximum three sites can 
match only up to 30 molecules out of 32. These CPHs ex
amined using a scoring function to yield the best alignment 

of the active ligands and quality of alignment measured by a 
survival score, which defined as:

S = WsiteSsite + WveCSvec + WvolSvol + WselSsel + Hw (8) 

Where Wds are weights and Sds are scores, S$ite represents an 
alignment score, the root mean square deviation at the site 
point position. Svec represents vector score, and averages 
cosine of the angles formed by corresponding pairs of vector 
features in aligned structures. Svol represents volume score 
based on overlap of van der Waals models of non-hydrogen 
atoms in each pair of structures. Ssel represents the selectivity 
score, and accounts for what fractions of molecules are 
likely to match the hypothesis regardless of their activity 
toward a receptor. Weights are user adjustable. Wsite, Wvec, 
Wvol, and Wrew have a default value of 1.0 while Wsel has a 
default value of 0.0, so that a useful hypothesis are not 
missed out. Wrmew represents the reward weights, where is 
the number of actives that match the hypothesis minus one. 
In the hypothesis generation, all default values used.

Assessment of significant CPH using Partial Least 
Square Analysis (PLS). The evaluation of generated CPHs 
performed by correlating the observed and estimated 
activities of training and test sets of 20 and 10 molecules 
respectively. The PLS analyses carried out using PHASE 
with maximum of N/3 PLS factors, N1/3 number of ligands 
in training set, and either atom, or pharmacophore-based 
model using grid spacing of 1 A. CPHs of best predictivity 
and significant statistics were selected for molecular align
ments and QSAR model. The same alignment used for 
further 3D-QSAR (CoMFA and CoMSIA).

3D-QSAR (CoMFA and CoMSIA). In standard CoMFA 
and CoMSIA procedure, a suitable conformation29 is desired 
for superimposing the ligands which is assumed to be 
bioactive. The alignment based on CPH with significant 
statistical data was imported in to SYBYL 7.3 30 running on 
linux cluster and directly used for 3D-QSAR. Lennard-Jones 
and Coulomb potentials based CoMFA has been performed 
and the steric as well as electrostatic energies were calcu
lated by using sp3 carbon probe atom with Van der Waals 
radius of 1.52 A and (+1) charge. The energies truncated to 
±30 kcal mol-1 and the electrostatic contributions ignored at 
lattice interactions with maximum steric interactions. The 
CoMFA generated by standard method in SYBYL. The 
CoMSIA models derived with the same lattice box as in 
CoMFA. All five CoMSIA similarity index (steric, electro
static, hydrophobic, hydrogen bond donor, and hydrogen 
bond acceptor) evaluated using the probe atom. The 
CoMSIA models from hydrophobic and hydrogen bonds 
were calculated between the grid point and each atom of the 
molecule by a Gaussian distribution function.18 The default 
value (0.3) of attenuation factor was used, which is the 
standard distance dependence of molecular similarity. The 
effect of using the standard attenuation factor displayed in 
contour maps with prominent molecular features.

Partial Least Square (PLS) analysis and validation of 
QSAR models: To derive 3D-QSAR models, the CoMFA 
and CoMSIA descriptors used as independent variables and 
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the PIC50 as the dependent variable. PLS analysis31,32 used to 
correlate these CoMFA and CoMSIA descriptors as a func
tion of variation of inhibitory activity values. The CoMFA 
cutoff values were set to 30 kcal mol-1 for both steric and 
electrostatic fields, and all fields scaled by the default 
options in SYBYL. The crossvalidation analysis performed 
by using the leave one out (LOO) method in which one 
compound removed from the data set and its activity predict
ed using the model derived from the rest of the data points. 
The cross-validated correlation coefficient (q2) that resulted 
in optimum number of components and lowest standard 
error of prediction were considered for further analysis and 
calculated using following equations (9)-(10)

£ C^^re^ — yobsserved)
q = i - ----------------------------- 2 (9)

£ ^^obsserved ymean)
y

PRESS = £ (^predicted — yobsserved) (10)y

Where, Ypred, Y^ctual and Ymean are predicted, actual, mean values 
of the target property (plCso), respectively, and PRESS is the 
sum of predictive sum of squares. The non-crossvalidated PLS 
analyses were performed with 2.0 column filter, to reduce com
putation time with small effect on the q2 values. To assess the ro
bustness and statistical confidence of the derived models, 
bootstrapping analysis for 10 runs performed. To assess the pre
dictive power of the 3D-QSAR models derived using the train
ing set, biological activities of an external test set of twelve 
molecules predicted. The predictive ability of the models is ex
pressed by the r2predictive value, which is analogous to cross-vali
dated r2 (q2) and is calculated using the formula-11

2 SD - PRESS
rpred = -------- -SD--------  (11)

Where SD is the sum of the squared deviations between the 
biological activities of the test set and mean activities of the 
training molecules and PRESS is the sum of squared 
deviation between predicted and actual activities of the test 
set molecules.

Results

QM-based QSAR. The necessary input values extracted 
from MOPAC calculation result. MLRA (multiple linear 
regression analysis) employed to correlate the variation of 
activity with the values of chemical potential, electrophilic 
frontier density, molar refractivity and solvent accessible 
surface area.

In initial step of regression, no significant model obtained 
but after careful data mining, based on number of rings one- 
indicator parameter "I” introduced. All molecules having 
four rings they have been allotted I = 1 while for rest all 
molecules I = 0. This indicator parameter significantly con
tributes to every models, clearly indicates the pharmaco
phore feature of fourth ring. In general, the aromatic rings 
are responsible for hydrophobicity so the presence of 

indicator parameter in every model indicates the probability 
of hydrophobic interaction. A significant model PA1 was 
reported with better statistics (r2cv = 0.73, r2 = 0.79) which 
involve molar refractivity with a coefficient 0.004 and 
chemical potential with a coefficient 0.82. The major con
tribution of MR and small contribution of chemical potential 
indicates that, there is a contribution of steric and electro
static field effect to activity. Based on this model the pre
dicted activities of training and test sets are reported in Table 2.

PA1 = 0.004 x MR + 0.82 x 卩 + 1.83 x I-4.22
N = 20, r2CV = 0.73, r2 = 0.79, SEE = 0.52, F = 23.34, 

Pearson Rtestset=0.89 (12)

The model was validated against test set of 10 molecules 
(Pearson Rtestset = 0.89). Similarly another significant model 
(r2Cv = 0.75 r2 = 0.80) obtained by solvent assessable surface 
area (SASA) with a coefficient 0.005 and chemical potential 
with a coefficient 0.767. The SASA is also steric and 
hydrophobic parameter while 卩 is electrostatic parameter, 
which is in consonance with model PA1 and gives emphasis 
to contribution of steric bulk to activity.

PA2 = 0.005 x SASA + 0.767 x 卩 + 1.759 x I - 4.360
N = 20, r2CV = 0.75 r2 = 0.80, SEE = 0.50, F = 2501, 

Pearson Rtestset = 0.91 (13)

Based on this model the regression equation (13) developed 
and the predicted activities of training and test sets are 
reported in Table 2. This model was also validated against 
test set of 10 molecules (Pearson Rtestset = 0.91). In order to 
have further insight for electrostatic interaction a quantum 
mechanical atomic level calculation was performed and the 
electrophilic frontier density (EFD) at every atom of each 
molecules were calculated, the highest EFD of every mole
cule has been used as electrostatic descriptor. The model 
PA3 derived by MR and EFD with indicator parameter "I” 
which gives better statistics (r2CV = 0.79 r2 = 0.85) than 
corresponding model PA1. The regression equation (14) has 
been derived and the predicted activities of training and test 
sets are reported in Table 2.

PA3 = 0.013 x MR - 1.66 x EFD + 1.395 x I - 1.034
N = 20, r2CV = 0.79 r2 = 0.85, SEE = 0.50, F = 25.63, 

Pearson Rtestset = 0.94 (14)

The routine model validation carried out using test set of 10 
molecules (Pearson Rtestset = 0.94). Similarly, the contribu
tion of EFD tested in conjunction with SASA and the 
regression model PA-4 was derived. This model gives better 
statistics (r2CV = 0.79 r2 = 0.85) than corresponding model 
PA-2 and the regression equation (15) has been developed. 
The predicted activities of training and test sets by model 
PA-4 are reported in Table 2.

PA4 = 0.013 x SAS - 1.758 x EFD + 1.187 x I - 1.795
N = 20, r2CV = 0.79, r2 = 0.85, SEE = 0.38, F = 28.35, 

Pearson Rtestset = 0.95 (15)
Like before this model was also validated against test set of 
10 molecules (Pearson Rtestset = 0.95).

The linear dependency of Observed pIC50 jointly on steric,
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Table 2. The Observed and predicted PIC50 values of mPEGS-1 
inhibitors by quantum mechanical descriptors

No. pIC50 PA1 PA2 PA3 PA4
1 -0.2 -0.334 -0.315 -0.706 -0.717
5 -0.51 -0.273 -0.258 -0.659 -0.681
6a -0.86 -0.252 -0.225 -0.543 -0.522
7a -1.04 -0.143 -0.111 -0.744 -0.701
8 -0.81 -0.246 -0.232 0.027 0.066
11 0.05 -0.018 -0.007 0.261 0.315
12 0.59 -0.064 -0.054 0.437 0.486
13 0.6 -0.085 -0.079 0.152 0.193
14 -0.04 -0.387 -0.401 -0.261 -0.283
15 -0.63 -0.372 -0.426 -0.211 -0.337
16 -0.51 -0.437 -0.475 -0.472 -0.538
17 -0.42 -0.295 -0.328 -0.411 -0.433
18 0.48 -0.393 -0.388 -0.17 -0.149
20 0.8 1.652 1.634 1.765 1.695
22 1.66 1.783 1.785 1.815 1.813
24 1.5 2.016 1.993 1.677 1.662
26 2.3 1.709 1.733 1.875 1.916
27 2.4 1.823 1.846 1.807 1.869
28 2.1 1.842 1.841 1.764 1.774
30 2.52 1.801 1.798 1.847 1.833
31 1.48 1.828 1.823 1.85 1.837
32 1.51 1.815 1.816 1.87 1.872

Test Set
2 -1.04 -0.41 -0.44 -1.24 -1.35
3 -1.04 -0.40 -0.45 -1.16 -1.30
4 -0.83 -0.45 -0.49 -0.80 -0.96
9 0.19 -0.19 -0.16 0.10 0.20
10 0.54 -0.11 -0.04 0.37 0.53
19 0.22 1.51 1.44 1.41 1.24
21 1.8 1.70 1.68 1.80 1.73
23 2.16 1.81 1.79 1.78 1.74
25 1.92 1.90 1.88 1.72 1.70
29 2.22 1.85 1.87 1.84 1.88 1

adatapoints not used inequations

electrostatic and hydrophobic parameters indicates that 
ligands have binding affinity with receptor due to steric, 
hydrophobic and electrostatic interaction. To gain further 
insight we have developed pharmacophore based QSAR 
models.

Pharmacophore. The same training and test sets used to 
develop the pharmacophore based QSAR models by using 
tree based partition algorithms. No CPHs obtained common 
in all 32 molecules but after elimination of compound 6 and 
7 a number of CPHs were reported using sites; hydrophobic 
(H), negative (N) and ring (R). Maximum three features 
were allowed to develop hypothesis and there were three 
hypotheses based on NRR, 17 hypotheses based on HRR, 97 
hypotheses based on HNR and 23 hypotheses based on 
HHR. On applying the scoring function for 3 features CPHs 
the 28 alignment rules were identified. The training set 
molecules were aligned by these different rules and the 
partial least square (PLS) analysis employed to correlates the

Table 3. The Statistical summary of Pharmacophore based Models

No. Model Factors q2 SD r2 F RMSE Pearson
Rtestset

A1 HNR 1 0.8 0.6 0.78 64.2 0.56 0.9
A2 HNR 2 0.59 0.4 0.91 83.1 0.81 0.79
A3 HNR 3 0.77 0.23 0.97 173.2 0.6 0.9
B1 HNR 1 0.74 0.6 0.78 63.7 0.64 0.87
B2 HNR 2 0.51 0.27 0.96 188.3 0.88 0.72
B3 HNR 3 0.62 0.21 0.97 202.5 0.78 0.79
C1 HNR 1 0.8 0.58 0.79 68.9 0.56 0.9
C2 HNR 2 0.72 0.4 0.91 83 0.66 0.85
C3 HNR 3 0.78 0.25 0.97 157.3 0.59 0.89
D1 HNR 1 0.68 0.78 0.63 30.2 0.71 0.83
D2 HNR 2 0.82 0.38 0.92 92.3 0.53 0.91
D3 HNR 3 0.79 0.27 0.96 132.3 0.58 0.89

Figure 1. Trend of observed and predicted activity by pharmaco
phore based model.

biological activities with pharmacophore scores. In PLS 
analysis, 3 factors used with a grid spacing 1 A. The three 
different regression models for each alignment were derived 
and the regression summary of top four hypotheses (A1-A3, 
B1-B3, C1-C3 and D1-D3) is reported in Table 3. The top 
models were selected by values of survival score of hypo
theses A (survival score = 7.3), B (survival score = 7.27), C 
(survival score = 7.23) and D (survival score = 7.19). All 
four rules of alignment were based on pharmacophore com
bination (HNR). Model A3 is statistically (q2 = 0.77, r2 = 
0.97, F = 173.2, Rtestset = 0.9) best fitted and consequently 
used for prediction of activities of training and test sets of 
molecules as reported in Table 4. Figure 1 shows the trend of 
observed and predicted activities.

Figure 2 demonstrates the selected pharmacophore on 
template molecule-30. The green ball showing the H 
(hydrophobic) pharmacophore while red ball showing N 
(negative) site. The brown ring demonstrates the R (ring) 
pharmacophore. The H and R are located in same zone, 
which is quite reasonable. The hydrophobicity not related to 
parent skeleton but with fourth ring, which is in accordance
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Table 4. The Observed and predicted activities by Pharmacophore 
based Model

No. pIC50 PApharma Resid.
1 -2.04 -1.92 -0.12
5 0.5 -0.44 -0.06
8 -0.81 -0.7 -0.11

11 0.5 -0.07 -0.43
12 -0.58 -0.94 -0.36
13 -0.6 -0.76 -0.16
14 -0.04 -0.36 -0.4
15 -0.633 -0.74 -0.107
16 -0.5 -0.44 -0.06
17 -0.41 -0.42 -0.01
18 -0.48 -0.25 -0.23
20 -0.8 -0.67 -0.13
22 -1.67 -1.89 -0.22
24 -1.5 -1.56 -0.06
26 -2.3 -2.2 -0.1
27 -2.4 -2.21 -0.19
28 -2.1 -1.98 -0.12
30 -2.52 -2.27 -0.25
31 -1.48 -1.73 -0.25
32 -1.51 -1.72 -0.21

Test Set
2 -1.04 -0.03 -1.07
3 -1.04 -0.21 -0.83
4 -0.83 -0.24 -0.59
9 -0.19 -0.6 -0.79
10 -0.54 -0.1 -0.44
19 -0.22 -0.61 -0.39
21 -1.8 -1.67 -0.13
23 -2.15 -1.75 -0.4
25 -1.92 -1.71 -0.21
29 -2.22 -1.72 -0.5

compound 6 and 7 ommitted from analysis due to lack of CPHs

to the assumption made for indicator parameters in QM 
based QSAR.

The molecules were aligned HNR based CPHs and shown 
in Figure 3. Same alignment subsequently used for predic-

Figure 2. The perception of pharmacophore on template molecule- 
30.

Figure 3. Pharmacophore based molecular alignment.

tion of activities by pharmacophore based QSAR and 3D- 
QSAR.

CoMFA model. CoMFA developed by using statistically 
significant CPH-based alignment. The aligned molecules 
imported in Sybyl and charges were assigned with the 
Gasteiger-Huckel method. Previously defined training and 
test sets were used to correlate the biological activities 
against CoMFA fields. Three different CoMFA models were 
derived using steric "S”，electrostatic “E” and jointly both 
fields. The regression summary reported in Table 5. The 
model based on both steric and electrostatic field is most 
successful as clear from statistics, the crossvalidated leave 
one out q2 = 0.90 with 6 components, non-crossvalidated r2

Table 5. Regression summary of CoMFA and CoMSIA

Field n q2 r2 SE F r%s SD r predictive

CoMFA
S 4 0.89 0.99 0.13 387.4 — — —
E 3 0.46 0.79 0.57 20.35 — — —

0.71S+0.28E 6 0.902 0.99 0.06 1083.59 0.99 0.001 0.8
CoMSIA

S 3 0.87 0.93 0.33 70.88 — — —
E 3 0.64 0.83 0.51 25.71 — — —
H 7 0.82 0.99 0.12 222.83 — — —
D 1 -0.59 — — — —
A 2 -0.1 — — — —

0.6S+0.4E 6 0.9 0.99 0.11 311.51 — — —
0.33S+0.30E+0.37H 10 0.93 1 0.01 6565.86 1 0 0.8
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Table 6. The Observed and predicted activities by CoMFA and 
CoMSIA based Models

No. pIC50 PAcomfa Resid. PAcoMSIA Resid.
^■1 -0.2 -0.208 0.008 -0.183 -0.017

5 -0.5 -0.498 -0.002 -0.502 0.002
8 -0.81 -0.835 0.025 -0.799 -0.011

11 0.05 -0.025 0.075 0.038 0.012
12 0.58 0.604 -0.024 0.585 -0.005
13 0.6 0.639 -0.039 0.601 -0.001
14 -0.04 -0.089 0.049 -0.048 0.008
15 -0.63 -0.614 -0.016 -0.617 -0.013
16 -0.51 -0.451 -0.059 -0.504 -0.006
17 -0.41 -0.437 0.027 -0.431 0.021
18 -0.48 -0.416 -0.064 -0.493 0.013
20 0.8 0.806 -0.006 0.806 -0.006
22 1.66 1.806 -0.146 1.666 -0.006
24 1.5 1.425 0.075 1.49 0.01
26 2.3 2.312 -0.012 2.329 -0.029
27 2.4 2.392 0.008 2.414 -0.014
28 2.1 2.048 0.052 2.074 0.026
30 2.52 2.509 0.011 2.499 0.021
31 1.48 1.431 0.049 1.476 0.004
32 1.51 1.507 0.003 1.504 0.006

Test Set
2 -1.04 -0.294 -0.746 -0.378 -0.662
3 -1.04 -0.247 -0.793 -0.524 -0.516
4 -0.83 -0.108 -0.722 -0.352 -0.478
9 0.19 -0.357 0.547 -0.478 0.668

10 0.54 -0.048 0.588 -0.507 1.047
19 0.22 0.498 -0.278 0.402 -0.182
21 1.8 1.365 0.435 1.227 0.573
23 2.15 1.544 0.606 1.599 0.551
25 1.92 1.483 0.437 1.707 0.213
29 2.22 2.024 0.196 2.116 0.104

compound 6 and 7 ommitted from analysis due to lack of CPHs

=0.99 with standard error = 0.06 and F value = 1083.59. 
The success of model was tested for internal predictivity 
(r%oot strapping = 0.99, SD = 0.001) and external predictivity 
(r2predictive = 0.80) for test set of 10 molecules. Based on this 
model the predicted activities are presented in Table 6. The 
trend of observed and predicted activities of training and test 
sets are shown in Figure 4 with a value of Rtestset = 0.92.

The Figure 5 shows CoMFA contour map based on 
CoMFA model-3 with ligand 30. The model holds green and 
blue contour around ring B indicates that a bulky and 
positive group around this ring might have good effect over 
activity. The ring A and pentagonal ring holds a yellow 
contour, indicates the favorable sites for small groups. The 
data also supports this observation and in case of compound 
20-32 as bulk increases at ring B the activity also increases 
while in case of compound 1-11 as bulk increases at 
pentagonal ring the activity decreases.

CoMSIA model. The CoMSIA models also have been 
made by using five field descriptors namely (steric, electro
static, hydrophobic, Hydrogen bond donor and acceptor)

Figure 4. Trend of Observed and predicted pIC50 by CoMFA 
based model.

Figure 5. The CoMFA steric and electrostatic contour maps.

with same molecular alignment as for CoMFA. The steric 
field alone shows good relationship with the value of q2 = 
0.87 while in conjunction with electrostatic field the result 
become more prominent (q2 = 0.90 and r2 = 0.99). The most 
fitted model (q2 = 0.93, r2 = 1.00) was obtained by combi
nation of steric, electrostatic and hydrophobic fields. This 
model involves SE = 0.01 and F values = 6565.86 and the 
model was tested for internal predictivity (r2boot strap = 1.00) 
and external predictivity (r2predictive = 0.80) to test set of 10 
molecules. The statistical summary and the predicted 
activities of training and test sets are reported in Table 5 and 
Table 6 respectively. The trend of observed and predicted 
activities of training and test sets is shown in Figure 6 with a 
value of Pearson Rtestset = 0.91.

CoMSIA steric contour map was developed and shown in 
Figure 7 with template (ligand-30). The map is quite similar 
to CoMFA map and holds a green contour around ring B 
while yellow contour around ring A and pentagonal ring. It 
is clear from map the ring B is favorable for bulk while ring 
A and pentagonal ring is favorable for small groups. 
Similarly, the Figure 8 shows CoMSIA electrostatic contour 
map and a small blue contour appears around ring "A”, 
indicates that a positive group around this site might 
improve the activity. The CoMSIA hydrophobic contour 
map shown in Figure 9 and hydrophobic favorable magenta
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Figure 6. Trend of Observed and predicted pIC50 by CoMSIA 
based model.

Figure 7. The CoMSIA steric map.

Figure 8. The CoMSIA electrostatic map.

Figure 9. The CoMSIA hydrophobic map.

contour appear around ring B. The same site holds a green 
contour in Figure 7 and red contour in Figure 8, which is 
quite reasonable, and a bulk with negative charge and 
hydrophobic nature might improve the activity. In quantum 
mechanical QSAR we have taken an Indicator parameter 
responsible for existence of ring B in molecule.

Since rings often related with hydrophobic nature and we 

assumes that indicator parameter related with hydropho
bicity, the CoMSIA gives a support to assumption and there 
is demand of hydrophobic group at fourth ring for which the 
“I'' was considered. In same figure, a cyan contour appears 
near to pentagonal ring, which also holds a yellow contour in 
Figure 8 and indicates that a hydrophilic and small group is 
desirable around this site.

Discussion

PGE synthase is a member of the MAPEG family, which 
includes FLAP and LTC4 synthase. MK-886, which is a 
known inhibitor of PGE synthase, leukotriene biosynthesis,33 
and LTC4 synthase.34 Since there is no crystal structure of 
mPEGS-1, the ligand-based QSAR techniques are tools to 
understand inhibitor potency. Interestingly it is found that 
the region of FLAP essential for binding of MK-88635,36 is 
highly conserved in PGE synthase. MK-886 appears to 
inhibit leukotriene biosynthesis by binding to an arachido
nate binding site on FLAP.37 The presence of a consensus 
amino acid sequence and sensitivity to indole inhibitors of 
the MK-886 series for FLAP, LTC4 synthase, and PGE 
synthase suggest that this region might have similar inter
action with MK-886. In fact, the negative charge of the 
aspartate or a glutamate at position 62 of FLAP is essential 
for binding MK-886 analogues. In present study it is clear 
from CoMFA map, there is a demand of positive groups to 
improve the activity. The positive group may facilitate the 
binding with negative zone of receptor. The position R1 of 
structure “C” is favorable for electropositive groups, which 
is also clear from compound 22 and 23. A fluorine atom 
instead of chlorine at R1 (structure-C) significantly increase 
the activity. Similarly, the site R2 of structure “C” is 
favorable for bulkiness. It is clear from data, the compounds 
21 to 32 holds phenyl ring at site R2 that is favorable for 
bulkiness and the activity of all the compounds is compa
ratively higher than other molecules. As bulk increases to 
the 
The

phenyl ring of R2 (structure “C”) the activity increases. 
ring at R2 is very sensitive to activity, the compounds

30, 31 and 32 has similar structure but the position of methyl 
group varies (site 2, 3 and 4) which brought significant 
change in activity.

Recently Amor et al.38 presented a systematic search 
based CoMFA and CoMSIA study of these compounds. The 
earlier work reports the contribution of hydrogen bond 
donor and acceptor field effect with steric electrostatic and 
hydrophobic interaction to activity but the model derived by 
steric, electrostatic and hydrophobic effect was statistically 
better than former model. The statistically refined results 
were presented but all available descriptors give high stati
stical values. In earlier CoMFA and CoMSIA study, there 
was no clear indication to key interaction. In this study, we 
have generated CPHs (common pharmacophore hypothesis) 
and there is no CPHs seen with hydrogen bond donor (D) or 
acceptor (A) but mostly CPHs based on HNR. We used the 
CPHs based alignment in CoMFA and CoMSIA, the model 
individually based on hydrogen bond donor field effect gives 



3D-QSAR of MK886 Analogues Bull. Korean Chem. Soc. 2008, Vol. 29, No. 3 655

leave one out q2 = -0.60 and hydrogen bond acceptor field 
effect gives leave one out q2 = -0.10 as reported in Table 5. 
The negative correlation coefficient supports to pharmaco
phore based assumption as there is no CPHs based on (D) or 
(A). In this way the results indicates that steric, electrostatic 
and hydrophobic effects are rather important and prominent 
factors for inhibition.

Conclusion

To identify the key factors more systematically, we have 
considered the three different QSAR methods. The quantum 
mechanical QSAR based on molecular and atomic descrip
tors indicate, steric bulk, electrostatic fields effect and 
hydrophobicity jointly contributes to activity of a series of 
mPGES-1 inhibitors. In the current study, we have generated 
CPHs which are based on HNR. To identify the factors more 
systematically, we have considered the three different 
methods of QSAR. The QM-based QSAR indicates, steric 
bulk electrostatic and hydrophobic effect jointly contributes 
to activity of a series of mPGES-1 inhibitors. The best CPHs 
identified which indicates that HNR are mainly responsible. 
In ligand-based 3D-QSAR analyses (CoMFA and CoMSIA) 
imply that the steric, electrostatic and hydrophobic effects 
jointly contribute to the inhibitory activity. The contour 
maps indicate the bulky group around ring B and small 
group near pentagonal ring may be desirable for better 
activity. These findings might be helpful to further design 
novel compounds with enhanced activity against mPGES-1.
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