THE EFFECT OF GENETIC VARIATION IN THE DNA BASE REPAIR GENES ON THE RISK OF HEAD AND NECK CANCER

DNA 염기손상 치유유전자의 변이와 두경부암 발생 위험성

  • Oh, Jung-Hwan (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung-Hee University) ;
  • Yoon, Byung-Wook (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung-Hee University) ;
  • Choi, Byung-Jun (Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung-Hee University)
  • 오정환 (경희대학교 치의학전문대학원 구강악안면외과학교실) ;
  • 윤병욱 (경희대학교 치의학전문대학원 구강악안면외과학교실) ;
  • 최병준 (경희대학교 치의학전문대학원 구강악안면외과학교실)
  • Published : 2008.10.31

Abstract

DNA damage accumulates in cells as a result of exposure to exogenous agents such as benzopyrene, cigarette smoke, ultraviolet light, X-ray, and endogenous chemicals including reactive oxygen species produced from normal metabolic byproducts. DNA damage can also occur during aberrant DNA processing reactions such as DNA replication, recombination, and repair. The major of DNA damage affects the primary structure of the double helix; that is, the bases are chemically modified. These modification can disrupt the molecules'regular helical structure by introducing non-native chemical bonds or bulky adducts that do not fit in the standard double helix. DNA repair genes and proteins scan the global genome to detect and remove DNA damage and damage to single nucleotides. Direct reversal of DNA damage, base excision repair, double strand break. DNA repair are known relevant DNA repair mechanisms. Four different mechanisms are distinguished within excision repair: direct reversal, base excision repair, nucleotide excision repair, and mismatch repair. Genetic variation in DNA repair genes can modulate DNA repair capacity and alter cancer risk. The instability of a cell to properly regulate its proliferation in the presence of DNA damage increase risk of gene mutation and carcinogenesis. This article aimed to review mechanism of excision repair and to understand the relationship between genetic variation of excision repair genes and head and neck cancer.

DNA 손상 치유 유전자 연구를 기초로 한 임상적 접근이 새로운 치료방법으로 떠오르고 있다. 많은 연구들이 중요한 DNA 수복유전자의 다형성을 찾아내어 각각의 단백질의 활동성에 대한 영향을 알아내고 특정한 치료법을 찾아내고 임상적 적용을 시도하고 결과를 평가하였다. 그 결과 암 치료에서 정상 세포와 암세포에서 DNA 수복 유전자의 발현 분석은 화학요법이나 방사선 치료에서 개인맞춤형 치료법을 가능하게 하고 있다. 예를 들어, NER이 결핍된 종양은 cisplatin 치료에 민감성을 나타내고, MMR 결핍세포는 알킬화 화학요법 약제에 높은 내성을 나타낸다. 선천성 비폴립성 결장암과 같은 MMR 결손종양 또한 알킬화 화학요법 약제에 의한 치료에 내성을 가진다. 신경교종(glioma)에서 MGMT 유전자 프로모터가 흔히 메틸화되는데 이것은 유전자 발현이 억제되고 알킬화 화학요법제에 대한 반응성을 증가시킨다. 향후 구강악안면외과 영역에서도 구강암의 발생의 위험성을 증가시킬 수 있는 더 많은 DNA 수복 유전자의 다형성을 발굴하고 임상적으로 개인맞춤형 치료법을 개발하고 적용할 수 있는 많은 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Wood RD, Mitchell M, Sgouros J, Lindahl T: Human DNA repair genes. Science 2001;291:1284-1289 https://doi.org/10.1126/science.1056154
  2. Lodish H, Berk A, Matsudaira P: Molecular Biology of the Cell 5th edi. P963, New York, WH Freeman. 2004
  3. Boer J, Hoeijmakers JH: Nucleotide excision repair and human syndromes. Carcinogenesis. 2000;21:453-460 https://doi.org/10.1093/carcin/21.3.453
  4. Yu Z, Chen J, Ford BN, et al: Human DNA repair systems: an overview. Environ Mol Mutagen. 1999;33:3-20 https://doi.org/10.1002/(SICI)1098-2280(1999)33:1<3::AID-EM2>3.0.CO;2-L
  5. Sancar A: Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev. 2003;103:2203-2237 https://doi.org/10.1021/cr0204348
  6. Foote RS, Mitra S, Pal BC: Demethylation of $O_6 $-methylguanine in a synthetic DNA polymer by an inducible activity in Escherichia coli.Biochem Biophys Res Commun. 1980;97:654-659 https://doi.org/10.1016/0006-291X(80)90314-9
  7. Gerson SL: Clinical relevance of MGMT in the treatment of cancer, J Clin Oncol 2002;20:2388-2399 https://doi.org/10.1200/JCO.2002.06.110
  8. Sawhney M, Rohatgi N, Kaur J, et al: MGMT expression in oral precancerous and cancerous lesions: correlation with progression, nodal metastasis and poor prognosis. Oral Oncol. 2007;43:515-522 https://doi.org/10.1016/j.oraloncology.2006.05.007
  9. Wang L, Zhu D, Zhang C, Mao X, et al: Mutations of $O_6 $-methylguanine-DNA methyltransferase gene in esophageal cancer tissues from Northern China. Int J Cancer. 1997;71:719-723 https://doi.org/10.1002/(SICI)1097-0215(19970529)71:5<719::AID-IJC5>3.0.CO;2-U
  10. Rodriguez MJ, Acha A, Ruesga MT, et al: Loss of expression of DNA repair enzyme MGMT in oral leukoplakia and early oral squamous cell carcinoma. A prognostic tool? Cancer Lett. 2007;245:263- 268 https://doi.org/10.1016/j.canlet.2006.01.015
  11. Kato K, Hara A, Kuno TJ, et al: Aberrant promoter hypermethylation of p16 and MGMT genes in oral squamous cell carcinomas and the surrounding normal mucosa. Cancer Res Clin Oncol. 2006;132:735- 743 https://doi.org/10.1007/s00432-006-0122-8
  12. Kulkarni V, Saranath D: Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues.Oral Oncol . 2004;40:145-153 https://doi.org/10.1016/S1368-8375(03)00143-X
  13. Nagane M, Asai A, Shibui S, Nomura K, Kuchino Y: Application of antisense ribonucleic acid complementary to $O_6 $-methylguaninedeoxyribonucleic acid methyltransferase messenger ribonucleic acid for therapy of malignant gliomas. Neurosurgery 1997;41:434-440 https://doi.org/10.1097/00006123-199708000-00021
  14. Memisoglu A, Samson L: Base excision repair in yeast and mammals. Mutation Res 2000;451:39-51 https://doi.org/10.1016/S0027-5107(00)00039-7
  15. Barnes DE, Lindahl T: Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 2004;38:445-476 https://doi.org/10.1146/annurev.genet.38.072902.092448
  16. Ide H, Kotera M: Human DNA glycosylases involved in the repair of oxidatively damaged DNA. Biol Pharm Bull 2004;27:480-485 https://doi.org/10.1248/bpb.27.480
  17. Matsumoto Y, Kim K: Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science. 1995;269:699-702 https://doi.org/10.1126/science.7624801
  18. Frosina G, Fortini P, Rossi O, et al: Two pathways for base excision repair in mammalian cells. J Biol Chem 1996;271:9573-9578 https://doi.org/10.1074/jbc.271.16.9573
  19. Hung RJ, Hall J, Brennan P, Boffetta P: Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol. 2005; 162:925-942 https://doi.org/10.1093/aje/kwi318
  20. Hao B, Wang H, Zhou K, et al: Identification of genetic variants in base excision repair pathway and their associations with risk of esophageal squamous cell carcinoma. Cancer Res 2004;64:4378- 4384 https://doi.org/10.1158/0008-5472.CAN-04-0372
  21. Li C, Hu Z, Lu J, et al: Genetic polymorphisms in DNA base-excision repair genes ADPRT, XRCC1, and APE1 and the risk of squamous cell carcinoma of the head and neck. Cancer 2007;110:867-875 https://doi.org/10.1002/cncr.22861
  22. Sturgis EM, Castillo EJ, Li L, et al: XPD/ERCC2 EXON 8 Polymorphisms: rarity and lack of significance in risk of squamous cell carcinoma of the head and neck. Oral Oncol 2002;38:475-477 https://doi.org/10.1016/S1368-8375(01)00106-3
  23. Sturgis EM, Zheng R, Li L, et al: XPD/ERCC2 polymorphisms and risk of head and neck cancer: a case-control analysis. Carcinogenesis 2000;21(12):2219-2223 https://doi.org/10.1093/carcin/21.12.2219
  24. Li C, Liu Z, Wang LE, Strom SS: Genetic variants of the ADPRT, XRCC1 and APE1 genes and risk of cutaneous melanoma. Carcinogenesis. 2006;27:1894-1901 https://doi.org/10.1093/carcin/bgl042
  25. Leibeling D, Laspe P, Emmert S: Nucleotide excision repair and cancer. J Mol Histol. 2006;37:225-238 https://doi.org/10.1007/s10735-006-9041-x
  26. Kulaksiz G, Reardon JT, Sancar A: Xeroderma pigmentosum complementation group E protein (XPE/DDB2): purification of various complexes of XPE and analyses of their damaged DNA binding and putative DNA repair properties. Mol Cell Biol. 2005;25:9784-9792 https://doi.org/10.1128/MCB.25.22.9784-9792.2005
  27. Evans E, Moggs JG, Hwang JR, et al: Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 1997; 16:6559-6573 https://doi.org/10.1093/emboj/16.21.6559
  28. Emmert S, Schneider TD, Khan SG, Kraemer KH: The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res. 2001;29:1443-1452 https://doi.org/10.1093/nar/29.7.1443
  29. Bau DT, Tsai MH, Huang CY, et al: Relationship between polymorphisms of nucleotide excision repair genes and oral cancer risk in Taiwan: evidence for modification of smoking habit. Chin J Physiol 2007;50:294-300
  30. ang Y, Spitz MR, Lee JJ: Nucleotide excision repair pathway genes and oral premalignant lesions. Clin Cancer Res 2007;13:3753-3758 https://doi.org/10.1158/1078-0432.CCR-06-1911
  31. Hsieh P, Yamane K: DNA mismatch repair: Molecular mechanism, cancer, and ageing. Mech Ageing Dev 2008; in press
  32. Aquilina G, Bignami M: Mismatch repair in correction of replication errors and processing of DNA damage. J Cell Physiol 187:145-154
  33. Li GM: Mechanisms and functions of DNA mismatch repair. Cell Res. 2008; 18:85-98 https://doi.org/10.1038/cr.2007.115
  34. Ramilo C, Gu L, Guo S, et al: Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol Cell Biol 2002;22:2037-2046 https://doi.org/10.1128/MCB.22.7.2037-2046.2002
  35. Modrich P, Lahue R: Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 1996;65:101- 133 https://doi.org/10.1146/annurev.bi.65.070196.000533
  36. Kadyrov FA, Dzantiev L, Constantin N, Modrich P: Endonucleolytic function of MutLalpha in human mismatch repair. Cell 2006;126(2):297-308 https://doi.org/10.1016/j.cell.2006.05.039
  37. Wang Y, Irish J, MacMillan C: High frequency of microsatellite instability in young patients with head-and-neck squamous-cell carcinoma: lack of involvement of the mismatch repair genes hMLH1 AND hMSH2. Int J Cancer. 2001;93:353-60 https://doi.org/10.1002/ijc.1337
  38. Castrilli G, Fabiano A, La Torre G, et al: Expression of hMSH2 and hMLH1 proteins of the human DNA mismatch repair system in salivary gland tumors. J Oral Pathol Med 2002;31:234-238 https://doi.org/10.1034/j.1600-0714.2002.310407.x
  39. Nunn J, Nagini S, Risk JM, et al: Allelic imbalance at the DNA mismatch repair loci, hMSH2, hMLH1, hPMS1, hPMS2 and hMSH3, in squamous cell carcinoma of the head and neck. Oral Oncol 2003;39:115-29 https://doi.org/10.1016/S1368-8375(02)00028-3
  40. Saito T, Oda Y, Kawaguchi K, et al: Possible association between tumor-suppressor gene mutations and hMSH2/hMLH1 inactivation in alveolar soft part sarcoma. Hum Pathol 2003;34:841-849 https://doi.org/10.1016/S0046-8177(03)00343-5