Effects of Structure of the Bridge on Polymerization Behavior of Dinuclear Constrained Geometry Catalysts and Properties of Ethylene-Styrene Copolymers

다리리간드의 구조가 이핵 CGC의 중합 특성과 생성된 에틸렌/스티렌 공중합체에 미치는 영향

  • 팜나탄 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 뉴옌티듀휴옌 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 웽티레탄 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 노석균 (영남대학교 공과대학 디스플레이화학공학부)
  • Received : 2010.09.27
  • Accepted : 2010.11.12
  • Published : 2011.01.25

Abstract

Polymerization properties of six dinuclear constrained geometry catalysts (DCGC) were investigated. The different length bridges of three catalysts were para-phenyl (Catalyst 1), para-xylyl (Catalyst 2), and para-diethylene phenyl (Catalyst 6). The other three DCGC have the same para-xylyl bridge with the different substituents at the phenyl ring of the bridge. The selected substituents were isopropyl (Catalyst 3), n-hexyl (Cataylst 4), and n-octyl (Catalyst 5), It was found that the longer catalyst not only exhibited a greater activity but also prepared a higher molecular weight copolymer. The catalyst 3 having a bulky isopropyl substituent revealed the lower activity but formed the highest molecular weight polymer comparing with the other alkyl substituted DCGCs. These results were able to be understood on the basis of the electronic and steric characteristics of the bridge. This study confirms that the control of the bridge structure of DCGC may contribute to control the microstructure of polymers.

굳은 특성을 가진 다리로 연결된 이핵 CGC 6개의 공중합특성을 조사하였다. 6개의 화합물 중에서 3개는 길이가 다른 para-phenyl (Catalyst 1), para-xylyl (Cata1yst 2), para-diethylene phenyl (Catalyst 6) 다리를 가진 화합물이며, 나머지 3개는 다리리간드는 para-xylyl 다리 기본구조를 가졌으나 치환체가 isopropyl (Catalyst 3), n-hexyl (Cataylst 4), n-octyl (Catalyst 5)인 화합물이었다. 이핵메탈로센 6가지와 Dow 촉매를 사용하여 에틸렌과 스티렌을 공중합시켜 다리리간드의 특성변화가 촉매의 중합특성과 이로부터 생성되는 공중합체의 특성에 미치는 영향을 조사하였다. 실험 결과 다리리간드의 길이가 증가함에 따라 촉매의 중합활성이 4배까지 향상되었으며 이로부터 생성되는 공중합체의 분자량도 증가하였다. 또한 para-xylyl 리간드의 치환체가 isopropyl에서 n-hexyl 및 n-octyl로 변함에 따라 중합활성은 증가하였으나 이로부터 생성되는 분자량은 감소하였다. 본 연구 결과는 촉매구조 변화에 의한 고분자 미세구조 조절이라는 고분자 합성의 가장 어려운 부분이 이핵메탈로센을 활용하여 어느 정도 현실화될 수 있음을 보여주는 결과이다.

Keywords

Acknowledgement

Supported by : 영남대학교

References

  1. H. Braunschweig and F. M. Breitling, Coord. Chem. Rev., 250, 2691 (2006). https://doi.org/10.1016/j.ccr.2005.10.022
  2. A. S. Rodrigues and J. F. Carpentier, Coord. Chem. Rev., 252, 2137 (2008). https://doi.org/10.1016/j.ccr.2007.11.023
  3. L. K. Johnson, S. D. Ittel, and M. Brookhart, Chem. Rev., 100, 1169 (2000). https://doi.org/10.1021/cr9804644
  4. K. Matyjaszewski and J. H. Xia, Chem. Rev., 101, 2921 (2001). https://doi.org/10.1021/cr940534g
  5. C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001). https://doi.org/10.1021/cr990119u
  6. R. Poli, Angew. Chem., Int. Ed., 45, 5058 (2006). https://doi.org/10.1002/anie.200503785
  7. K. Matyjaszewski, S. Gaynor, and J. S. Wang, Macromolecules, 28, 2093 (1995). https://doi.org/10.1021/ma00110a050
  8. M. N. Nguyen, C. Bressy, and A. Margaillan, J. Polym. Sci., Part A: Polym. Chem., 43, 5680 (2005). https://doi.org/10.1002/pola.21063
  9. N. T. B. Linh, N. T. D. Huyen, S. K. Noh, W. S. Lyoo, S. S. Han, and D. H. Lee, J. Organomet. Chem., 694, 3438 (2009). https://doi.org/10.1016/j.jorganchem.2009.06.033
  10. S. K. Noh, W. Jung, H. Oh, Y. R. Lee, and W. S. Lyoo, J. Organomet. Chem., 691, 5000(2006). https://doi.org/10.1016/j.jorganchem.2006.08.064
  11. S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, and S. W. Lee, J. Polym. Sci., Part A: Polym. Chem., 35, 3717 (1997). https://doi.org/10.1002/(SICI)1099-0518(199712)35:17<3717::AID-POLA11>3.0.CO;2-G
  12. S. K. Noh, M. Lee, D. H. Kum, K. Kim, W. S. Lyoo, and D. H. Lee, J. Polym. Sci., Part A: Polym. Chem., 42, 1712 (2004). https://doi.org/10.1002/pola.11034
  13. Y. Zhu, E. Jung, B. W. Lee, B. S. Kim, S. K. Noh, D. H. Lee, W. S. Lyoo, and Y. M. Kim, Macromol. Res., 15, 430 (2007). https://doi.org/10.1007/BF03218810
  14. N. Guo, C. L. Stern, and T. J. Marks, J. Am. Chem. Soc., 130, 2246 (2008). https://doi.org/10.1021/ja076407m
  15. A. Motta, I. L. Fragala, and T. J. Marks, J. Am. Chem. Soc., 131, 3974 (2009). https://doi.org/10.1021/ja8077208
  16. X. H. Xiao, B. C. Zhu, X. T. Zhao, Y. A. Wang, and J. Q. Sun, Inorg. Chim. Acta, 360, 2432 (2007). https://doi.org/10.1016/j.ica.2006.12.013
  17. X. H. Xiao, J. Q. Sun, X. Lia, H. F. Li, and Y. G. Wang, J. Mol. Catal. A : Chem., 267, 86 (2007). https://doi.org/10.1016/j.molcata.2006.11.025
  18. J. Q. Sun, Y. Nie, H. Ren, X. H. Xiao, Z. Z. Cheng, and H. B. Schumann, Eur. Polym. J., 44, 2980 (2008). https://doi.org/10.1016/j.eurpolymj.2008.06.011
  19. J. C. Stevens, F. J. Timmers, D. R. Wilson, G. F. Schmidt, P. N. Nickias, R. K. Rosen, G. W. Knight, and S. Lai, Eur. Pat. Appl. 0416815A2 (1991).
  20. J. P. Fackler, Inorganic Syntheses, A Wiley Interscience Publication, New York, XXI, p.135 (1982).
  21. K. Son, F. Joge, and R. M. Waymouth, Macromolecules, 41, 9663 (2008). https://doi.org/10.1021/ma801853f
  22. P. M. Lobon, J. O. Barcina, A. G. Martinez, M. T. Exposito, J. F. Vega, and S. J. Martinez, Macromolecules, 39, 7479 (2006). https://doi.org/10.1021/ma061757z
  23. Length of phenyl, para-xylyl, and para-diethylene phenyl were approximated by use of ChemBio 3D Ultra 11.0.