• 제목/요약/키워드: a discrete-time model

검색결과 768건 처리시간 0.024초

Nonlinear Filter for Orbit Determination (궤도결정을 위한 비선형 필터)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • 제10권1호
    • /
    • pp.21-28
    • /
    • 2016
  • Orbit determination problems have been interest of many researchers for long time. Due to the high nonlinearity of the equation of motion and the measurement model, it is necessary to linearize the both equations. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the extended Kalman filter update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the extended Kalman filter update mechanism. This filter based on the DQMOM and the EKF update is applied to the orbit determination problem with appropriate modification to mitigate the filter smugness. Unlike the extended Kalman filter, the hybrid filter based on the DQMOM and the EKF update does not require the burdensome evaluation of the Jacobian matrix and Gaussian assumption for the system, and can still provide more accurate estimations of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the hybrid filter based on the DQMOM and the EKF update make it a promising alternative to the extended Kalman filter for orbit estimation problems.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection (DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델)

  • Young-min Seo;Jung-woo Han;Hee-jung Kwon;Su-bin Lee;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • 제22권1호
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF

Development of More Realistic Overtaking Behavior Model in CA-Based Two-Lane Highway Environment (CA 2차로 도로 차량모형의 보다 현실적인 추월행태 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권6호
    • /
    • pp.2473-2481
    • /
    • 2013
  • The two characteristics of two-lane-and-two-way traffic flow are platoon and overtaking triggered by low-speed vehicle. It is crucial to develop a robust model which simultaneously generates the behaviors of platoon by low-speed vehicle and overtaking using opposite lane. Hence, a microscopic two-lane and two-way vehicle model was introduced (B. Yoon, 2011), which is based on CA (Cellular Automata) which is one of discrete time-space models, in Korea. While the model very reasonably explains the behaviour of overtaking low-speed vehicle in stable traffic flow below critical density, it has shortcomings to the overtaking process in unstable traffic flow above the critical density. Therefore, the objective of this study is to develope a vehicle model to more realistically explain overtaking process in unstable traffic flow state based on the model developed in the previous study. The experimental results revealed that the car-following model robustly generates the various macroscopic relationships of traffic flow generating stop-and-go traffic flow and the overtaking model reasonably explains the behaviors of overtaking under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking in unstable traffic flow state. The vehicle model presented in this study can be expected to be utilized for the analysis of two-lane-and-two-way traffic flows more realistically than before.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • 제25권6호
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

AUTOMATIC DATA COLLECTION TO IMPROVE READY-MIXED CONCRETE DELIVERY PERFORMANCE

  • Pan Hao;Sangwon Han
    • International conference on construction engineering and project management
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.187-194
    • /
    • 2011
  • Optimizing truck dispatching-intervals is imperative in ready mixed concrete (RMC) delivery process. Intervals shorter than optimal may induce queuing of idle trucks at a construction site, resulting in a long delivery cycle time. On the other hand, intervals longer than optimal can trigger work discontinuity due to a lack of available trucks where required. Therefore, the RMC delivery process should be systematically scheduled in order to minimize the occurrence of waiting trucks as well as guarantee work continuity. However, it is challenging to find optimal intervals, particularly in urban areas, due to variations in both traffic conditions and concrete placement rates at the site. Truck dispatching intervals are usually determined based on the concrete plant managers' intuitive judgments, without sufficient and reliable information regarding traffic and site conditions. Accordingly, the RMC delivery process often experiences inefficiency and/or work discontinuity. Automatic data collection (ADC) techniques (e.g., RFID or GPS) can be effective tools to assist plant managers in finding optimal dispatching intervals, thereby enhancing delivery performance. However, quantitative evidence of the extent of performance improvement has rarely been reported to data, and this is a central reason for a general reluctance within the industry to embrace these techniques, despite their potential benefits. To address this issue, this research reports on the development of a discrete event simulation model and its application to a large-scale building project in Abu Dhabi. The simulation results indicate that ADC techniques can reduce the truck idle time at site by 57% and also enhance the pouring continuity in the RMC delivery process.

  • PDF

Vertiport Location Problem to Maximize Utilization Rate for Air Taxi (에어 택시 이용률 최대화를 위한 수직이착륙장 위치 결정 문제)

  • Gwang Kim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • 제28권5호
    • /
    • pp.67-75
    • /
    • 2023
  • This paper deals with the operation of air taxis, which is one of the latest innovative technologies aimed at solving the issue of traffic congestion in cities. A key challenge for the successful introduction of the technology and efficient operation is a vertiport location problem. This paper employs a discrete choice model to calculate choice probabilities of transportation modes for each route, taking into account factors such as cost and travel time associated with different modes. Based on this probability, a mathematical formulation to maximize the utilization rate for air taxi is proposed. However, the proposed model is NP-hard, effective and efficient solution methodology is required. Compared to previous studies that simply proposed the optimization models, this study presents a solution methodology using the cross-entropy algorithm and confirms the effectiveness and efficiency of the algorith through numerical experiments. In addition to the academic excellence of the algorithm, it suggests that decision-making that considers actual data and air taxi utilization plans can increase the practial usability.

An efficient Multicast Delivery Mechanism Based on Locality in Mobile IPv6 Networks (이동 IPv6 환경에서 지역성에 기반한 효율적인 멀티캐스트 전송 메커니즘)

  • Sung Sulyun;Kim Kiyoung;Shin Yongtae
    • The KIPS Transactions:PartC
    • /
    • 제12C권3호
    • /
    • pp.409-418
    • /
    • 2005
  • This paper presents an efficient multicast method based on a locality in mobile IPv6 networks. We exploit the repetitive movement pattern of mobile node to reduce the total number of experience of graft and join procedure. We defined the locality scope by a movement pattern. While the network is included in the locality scope, the network should maintain a multicast tree even when the mobile node moves to the other network. In this way, the mobile host can receive a multicast service without a delay when it moves to the network in the locality scope later. We compare our scheme with existing schemes under the total signaling cost and the service delay time by using a discrete analytical model for cost analysis. Analytical results demonstrated that the total signaling cost and service delay time was significantly reduced through our proposed scheme.

Two-Level Hierarchical Production Planning for a Semiconductor Probing Facility (반도체 프로브 공정에서의 2단계 계층적 생산 계획 방법 연구)

  • Bang, June-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제38권4호
    • /
    • pp.159-167
    • /
    • 2015
  • We consider a wafer lot transfer/release planning problem from semiconductor wafer fabrication facilities to probing facilities with the objective of minimizing the deviation of workload and total tardiness of customers' orders. Due to the complexity of the considered problem, we propose a two-level hierarchical production planning method for the lot transfer problem between two parallel facilities to obtain an executable production plan and schedule. In the higher level, the solution for the reduced mathematical model with Lagrangian relaxation method can be regarded as a coarse good lot transfer/release plan with daily time bucket, and discrete-event simulation is performed to obtain detailed lot processing schedules at the machines with a priority-rule-based scheduling method and the lot transfer/release plan is evaluated in the lower level. To evaluate the performance of the suggested planning method, we provide computational tests on the problems obtained from a set of real data and additional test scenarios in which the several levels of variations are added in the customers' demands. Results of computational tests showed that the proposed lot transfer/planning architecture generates executable plans within acceptable computational time in the real factories and the total tardiness of orders can be reduced more effectively by using more sophisticated lot transfer methods, such as considering the due date and ready times of lots associated the same order with the mathematical formulation. The proposed method may be implemented for the problem of job assignment in back-end process such as the assignment of chips to be tested from assembly facilities to final test facilities. Also, the proposed method can be improved by considering the sequence dependent setup in the probing facilities.

Estimation of Uncertain Past and Future Locations of Moving objects (이동 객체의 불확실한 과거 및 미래의 위치 추정)

  • 안윤애;류근호
    • Journal of KIISE:Databases
    • /
    • 제29권6호
    • /
    • pp.441-452
    • /
    • 2002
  • If continuous moving objects are managed by conventional database, it is not possible for them to store all position information changed over time in the database. Therefore, a time period of regular rate is determined and position information of moving objects are discretely stored in the system for every time period. However, if continuous moving objects are managed as discrete model, we will have problems which cannot properly answer to the query about uncertain past or future position information. To solve this problem, in this paper, we propose the method and algorithm which use the history information stored in the same database, to estimate the past or future location of moving objects. The cubic spline interpolation is used to estimate the past location and the mean movement value of the history information is used to predict the future location of moving objects. Finally, from the location estimation experimentation of using virtual trajectory and location sample, we proved that the proposed cubic spline function has less error than the linear function.