References
- Akkerman, G.L. and Skutina, M.A. (2017), "Control over transverse shifts of rail sleeper lattice which impact on deformation of ballast layer", Procedia Eng., 189, 181-185. https://doi.org/10.1016/j.proeng.2017.05.029.
- Attoh-Okine, N. (2017), Big Data and Differential Privacy: Analysis Strategies for Railway Track Engineering. John Wiley & Sons, Inc., USA. http://dx.doi.org/10.1002/ 9781119229070.
- Brajovic, L.M., Malovic, M., Popovic, Z. and Lazarevic, L. (2014), "Wireless system for sleeper vibrations measurement", Communications - Scientific Letters of the University of Zilina, 16(4), 21-26.
- Bohm, T. and Weiss, N. (2017), "Predictive analytics for railway - monitoring and maintaining point health with smart sensors and AI", Eisenbahntechnische Rundschau, 5, 42-45.
- Canete, E., Chen, J., Diaz, M., Llopis, L. and Rubio, B. (2019), "Wireless sensor networks and structural health monitoring: Experiences with slab track infrastructures", Int. J. Distrib. Sens. N., 15(3), 1-16. https://doi.org/10.1177/1550147719826002.
- Chudzikiewicz, A., Bogacz, R., Kostrzewski, M. and Konowrocki, R. (2018), "Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes", Transport, 33(2), 555-566. https://doi.org/10.3846/16484142.2017.1342101.
- Chellaswamy, C., Muthammal, R. and Geetha, T.S. (2018), "A new methodology for optimal rail track condition measurement using acceleration signals", Measurement Sci. Technol., 29(7), 1-16. https://doi.org/10.1088/1361-6501/aabe48.
- Chiachio, J., Chiachio, M., Prescott, D. and Andrews, J. (2019), "A knowledge-based prognostics framework for railway track geometry degradation", Reliab. Eng. Syst. Safe., 181, 127-141. https://doi.org/10.1016/j.ress.2018.07.004.
- Dhar, S., Zhang, Y., Xu, R., Danielsen, H.K. and Jensen, D. (2017), "Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing", IOP Conference Series: Materials Science and Engineering, 219(1), 012016, 38th Riso International Symposium on Materials Science, Denmark, September. https://doi.org/10.1088/1757-899X/219/1/012016.
- EU Project INNOTRACK, (2008), INNOTRACK - Innovative Track Systems. (Deliverable D3.1.1/D3.1.2, Definition of key parameters and Report on cost drivers for goal-directed innovation), Paris, France. https://cordis.europa.eu/result/rcn/47369_en.html
- Gerber, U., Zoll, A. and Fengler, W. (2015), "VerschleiB und Fahrflachenermudung an Weichen mit starrer Herzstuckspitze [Wear and rolling contact fatigue on common crossings of railway turnouts]", ETR - Eisenbahntechnische Rundschau, 01, 36-41.
- Gerber, U. and Fengler, W. (2007), "Belastung von Weichen mit starrer Herzstuckspitze [Load of turnouts with a rigid frog]", ZEVrail Glaser Annalen, 131(5), 202-214.
- He, M., Feng, L. and Zhao, D. (2019), "Application of distributed acoustic sensor technology in train running condition monitoring of the heavy-haul railway", Optik, 181, 343-350. https://doi.org/10.1016/j.ijleo.2018.12.074.
- Hoelzl, D. (2019), "Data-driven assessment of railway infrastructure", Master thesis, Institute of Structural Engineering, ETH Zurich, Zurich.
- Hastie T., Tibshirani R. and Freidman J. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, (2nd Ed.), Springer-Verlag, New York, USA.
- Izvolt, L., Sestakova and J. and Smalo, M. (2016), "Analysis of results of monitoring and prediction of quality development of ballasted and ballastless track superstructure and its transition areas", Communications - Scientific Letters of the University of Zilina, 18(4), 19-29.
- Izvolt, L., Sestakova, J. and Smalo, M. (2017), "The railway superstructure monitoring in bratislava tunnel no. 1 - Section of ballastless track and its transition areas", MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201711700063.
- Jeong, D. and Jeong, W. (2019), "Prediction of rolling noise based on machine learning technique using rail surface roughness data", J. Korean Soc. Railway, 22(3), 209-217. https://doi.org/10.7782/JKSR.2019.22.3.209.
- Khairallah, D., Blanc, J., Cottineau, L.M., Hornych, P., Piau, J.-M., Pouget, S., Hosseingholian, M., Ducreau, A. and Savin, F. (2019), "Monitoring of railway structures of the high speed line BPL with bituminous and granular sublayers", Constr. Build. Mater., 211, 337-348. https://doi.org/10.1016/j.conbuildmat.2019.03.084.
- Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B. and Pentsak, A. (2018a), "Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches", Eastern-European J. Enterprise Technologies, 94(4), 27-36. https://doi.org/10.15587/1729-4061.2018.139502
- Kovalchuk, V., Sysyn, M., Hnativ, Y., Bal, O., Parneta, B. and Pentsak, A. (2018b), "Development of a promising system for diagnosing the frogs of railroad switches using the transverse profile measurement method", Eastern European Journal of Enterprise Technologies, 92(2), 33-42. https://doi.org/10.15587/1729-4061.2018.125699
- Kim, N.H., Choi, J.H. and An, D. (2017), Prognostics and Health Management of Engineering Systems: An introduction. Springer International Publishing, Switzerland.
- Lichtberger, B. (2005), Track Compendium: Formation, Permanent Way, Maintenance, Economics. Eurailpress, Hamburg, Germany.
- Lay, E. and Rensing, R. (2013), Weichen [Railway Turnouts]. In Fendrich, L., and Fengler, W., (Eds.), Handbuch Eisenbahninfrastruktur [Field Manual Railway Infrastructure] (Vol. 2, pp. 239-306). Springer-Verlag, Berlin Heidelberg, Germany.
- Letot, C., Dersin, P., Pugnaioni, M., Dehombreux, P., Fleurquin, G., Douziech, C. abd La-Cascia, P. (2015), "A data driven degradation-based model for the maintenance of turnouts: A case study", IFACPapersOnLine, 28(21), 958-963. https://doi.org/10.1016/j.ifacol.2015.09.650.
- Landgraf, M. and Hansmann, F. (2018), "Fractal analysis as an innovative approach for evaluating the condition of railway tracks", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018. https://doi.org/10.1177/0954409718795763.
- Li, T. and Zhou, M. (2016), "ECG classification usingwavelet packet entropy and random forests", Entropy, 18(8), 285. https://doi.org/10.3390/e18080285.
- Li, Y., Wang, J., Zhao, H., Song, M. and Ou, L. (2019), "Fault diagnosis method based on modified multiscale entropy and global distance evaluation for the valve fault of a reciprocating compressor", Strojniski vestnik - Journal of Mechanical Engineering, 65(2), 123-135. http://dx.doi.org/10.5545/sv-jme.2018.5487.
- Minardo, A., Coscetta, A., Porcaro, G., Giannetta, D., Bernini, R. and Zeni, L. (2014), "Distributed optical fiber sensors for integrated monitoring of railway infrastructures", Struct.Monit. Maint., 1(2), 173-182. https://doi.org/10.12989/smm.2014.1.2.173.
- Mishra, M., Odelius, J., Thaduri, A., Nissen, A. and Rantatalo, M. (2017), "Particle filter-based prognostic approach for railway track geometry", Mech. Syst. Signal Pr., 96, 226-238. https://doi.org/10.1016/j.ymssp.2017.04.010.
- Neumann, T., Dutschk, B. and Schenkendorf, R. (2019), "Analyzing uncertainties in model response using the point estimate method: Applications from railway asset management", Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, (Article in press). https://doi.org/10.1177/1748006X19825593.
- Qin, L., Shen, X., Chen, X. and Gao, P. (2017), "Reliability Assessment of Bearings Based on Performance Degradation Values under Small Samples", Strojniski vestnik - Journal of Mechanical Engineering, 63(4), 248-254. http://dx.doi.org/10.5545/sv-jme.2016.3898.
- Rapp, S., Martin, U., Strahle, M. and Scheffbuch, M. (2019), "Track-vehicle scale model for evaluating local track defects detection methods", Transportation Geotechnics 19, 9-18. https://doi.org/10.1016/j.jrtpm.2016.03.001.
- Saxena, A., Celaya, J., Saha, B., Saha, S. and Goebel, K. (2010), "Metrics for offline evaluation of prognostic performance". Int. J. Prognostics Health Management, 1(1).
- Si, X., Zhang Z. and Hu, C. (2017), Data-Driven Remaining Useful Life Prognosis Techniques: Stochastic Models, Methods and Applications. Springer Series in Reliability Engineering, Springer-Verlag GmbH, Berlin Heidelberg, Germany.
- Sysyn, M., Kovalchuk, V. and Jiang, D. (2019a), "Performance study of the inertial monitoring method for railway turnouts", Int. J. Rail Transportation, 7(2), 103-116. http://dx.doi.org/10.1080/23248378.2018.1514282.
- Sysyn, M., Gruen, D., Gerber, U., Nabochenko, O. and Kovalchuk, V. (2019b), "Turnout monitoring with vehicle based inertial measurements of operational trains: A machine learning approach", Communications - Scientific Letters of the University of Zilina, 21(1), 42-48. https://doi.org/10.26552/com.C.2019.1.42-48
- Sysyn, M., Gerber, U., Nabochenko, O. and Kovalchuk, V. (2019c), "Common crossing fault prediction with track based inertial measurements: statistical vs mechanical approach", Pollack Periodica, 14(2), 15-26, https://doi.org/10.1556/606.2019.14.2.2.
- Sysyn, M., Nabochenko, O., Kluge F., Kovalchuk, V. and Pentsak, A. (2019d), "Common crossing structural health analysis with track-side monitoring", Communications - Scientific Letters of the University of Zilina, 21(3), 79-86.
- Sysyn, M., Gerber, U., Gruen, D., Nabochenko, O. and Kovalchuk, V. (2019e), "Modelling and vehicle based measurements of ballast settlements under the common crossing", European Transport / Transporti Europei - International Journal of Transport Economics, Engineering and Law, 71, 1-25.
- Sysyn, M., Gerber, U., Nabochenko, O., Li, Y. and Kovalchuk, V. (2019f), "Indicators for common crossing structural health monitoring with track-side inertial measurements", Acta Polytechnica, 59(2), 170-181. https://doi.org/10.14311/AP.2019.59.0170.
- Sysyn, M., Gerber, U., Nabochenko, O., Gruen, D. and Kluge, F. (2019g), "Prediction of rail contact fatigue on crossings using image processing and machine learning methods", Urban Rail Transit, 5(2), 123-132. https://doi.org/10.1007/s40864-019-0105-0.
- Tastimur, C., Karakose, M. and Akin, E. (2016), "A vision based condition monitoring approach for rail switch and level crossing using hierarchical SVM in railways", IJAMEC, 4, 319-325. https://doi.org/10.18100/ijamec.270634.
- Yin, A., Lu, J., Dai, Z., Li, J. and Ouyang, Q. (2016). "Isomap and Deep Belief Network-Based Machine Health Combined Assessment Model", Strojniski vestnik - Journal of Mechanical Engineering, 62(12), 740-750. http://dx.doi.org/10.5545/sv-jme.2016.3694.
- Zoll, A. (2016), "Werkstoffauswahl fur Weichenhetzstucke durch Prufstandversuche. [Material selection for point frog points through test bench tests.]" Ph.D. Dissertation, TU Berlin, Berlin.
- Zoll, A., Gerber, U. and Fengler, W. (2016), "Das Messsystem ESAH-M [The measuring system ESAH-M]", EI-Eisenbahningenieur Kalender, 1, 49-62.
- Zhou, Y., Li, Y. and Liu, H. (2019), "Feature Enhancement Method for Drilling Vibration Signal by Using Wavelet Packet Multi-band Spectral Subtraction", Strojniski vestnik - Journal of Mechanical Engineering, 65(4), 219-229. https://doi.org/10.5545/sv-jme.2018.5726.
Cited by
- Improvement recommendations for railway infrastructure maintenance vol.157, 2019, https://doi.org/10.1051/e3sconf/202015701001
- Identification of Sleeper Support Conditions Using Mechanical Model Supported Data-Driven Approach vol.21, pp.11, 2019, https://doi.org/10.3390/s21113609