DOI QR코드

DOI QR Code

Development of More Realistic Overtaking Behavior Model in CA-Based Two-Lane Highway Environment

CA 2차로 도로 차량모형의 보다 현실적인 추월행태 개발

  • 윤병조 (인천대학교 도시과학대학 도시환경공학부)
  • Received : 2013.06.19
  • Accepted : 2013.08.12
  • Published : 2013.11.30

Abstract

The two characteristics of two-lane-and-two-way traffic flow are platoon and overtaking triggered by low-speed vehicle. It is crucial to develop a robust model which simultaneously generates the behaviors of platoon by low-speed vehicle and overtaking using opposite lane. Hence, a microscopic two-lane and two-way vehicle model was introduced (B. Yoon, 2011), which is based on CA (Cellular Automata) which is one of discrete time-space models, in Korea. While the model very reasonably explains the behaviour of overtaking low-speed vehicle in stable traffic flow below critical density, it has shortcomings to the overtaking process in unstable traffic flow above the critical density. Therefore, the objective of this study is to develope a vehicle model to more realistically explain overtaking process in unstable traffic flow state based on the model developed in the previous study. The experimental results revealed that the car-following model robustly generates the various macroscopic relationships of traffic flow generating stop-and-go traffic flow and the overtaking model reasonably explains the behaviors of overtaking under the conditions of both opposite traffic flow and stochastic parameter to consider overtaking in unstable traffic flow state. The vehicle model presented in this study can be expected to be utilized for the analysis of two-lane-and-two-way traffic flows more realistically than before.

2차로 양방향 교통류의 주요한 특징은 저속차량으로 인한 차량군과 차량추월이다. 따라서 교통류 모의실험을 이용하여 2차로 도로 교통류의 미시적 분석하기 위해서는 차량군의 행태와 더불어 대항차로를 이용한 추월 행태를 동시에 구현하는 차량모형의 개발이 필수적이다. 이에 따라 국내에서는 이산적 시공간을 기반으로 2차로 양방향 교통류 모형이 소개 되었다(윤병조, 2011). 그러나 선행연구는 임계밀도 이하의 안정 교통류 상태에서 차량추월 행태의 설명력이 우수한 반면, 불안정 교통류상태에서 차량추월의 행태를 설명하기에는 단점을 가지고 있었다. 따라서 본 연구에서는 선행연구를 기반으로 불안정 교통류 상태에서 보다 현실적으로 차량추월을 구현하는 모형을 수정/개발하였다. 개발된 모형의 평가를 위하여 모의실험을 수행한 결과, 차량추종모형은 교통류의 미시적 특성중 하나인 가다서다(Stop-and-go) 현상을 설명하면서 거시적 교통류 관계를 효과적으로 구현 하였으며, 추월모형은 대향방향 교통류와 차량추월 확률변수의 조건에 따라 불안정 교통류상태에서도 합리적으로 차량추월을 설명하였다. 따라서 본 논문에서 제시된 차량모형은 보다 더 현실적으로 2차로 도로 교통류의 분석에 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. ARRB (1985). Technical manual ATM 10A; A model for simulating traffic on two-lane rural roads: User Guide and Manual for TRARR Version 3.0.
  2. Barlovic, R., Santen, L., Schadschneider, A. and Schreckenberg, M. (1997). "Meta-stable states in CA models for traffic flow." Traffic And Granular Flow 97, Springer, pp. 335-340.
  3. Beckman, R. J. et al. (1997). TRANSIMS Dallas/Fort worth case study report, Los Alamos Unclassified Report LA-UR to be released, Los Alamos National Laboratory, TSA-Division, Los Alamos NM 87545, USA.
  4. Chang, H. and Lee, S. (2003). "A study on link travel time prediction by short term simulation based on CA." Journal of Korean Society of Transportation, Vol. 21, No. 1, pp. 91-102 (in Korean).
  5. Chang, H., Baek, S. and Park, J. (2004). "A study on stochastic wave propagation model to generate various uninterrupted traffic flows." Journal of Korean Society of Transportation, Vol. 22, No. 4, pp. 147-158 (in Korean).
  6. Chang, H., Baek, S., Kim, H., Shah, A. A., Lee, J. D. and Mahalik, N. P. (2008). "Development of distributed real-time decision support system for traffic management centers using microscopic CA model." Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 31, No. B2, pp. 155-166.
  7. Chang, H., Baek, S., Namkoong, J. and Yoon, B. (2005). "Some findings of CA models to generate various freeway traffic flows with additional rules." Journal of EASTS, Vol. 6, pp. 1368-1381.
  8. Cho, J., Kim, J., Kho, S. and Kim, C. (2001). "A traffic flow micro-simulation system using cellular automata." Journal of Korean Society of Transportation, Vol. 19, No. 3, pp. 133-144 (in Korean).
  9. Choen, S. and Rho, J. (2001). "Development of a traffic simulation model analyzing the effects of highway incidents using the CA(Cellular Automata) model." Journal of Korean Society of Transportation, Vol. 19, No. 6, pp. 219-227 (in Korean).
  10. Chopard, B., Dupuis, A. and Luthi, P. (1997). "A cellular automata model for urban traffic and its application to the city of geneva." Traffic And Granular Flow 97, Springer, pp. 153-168.
  11. Goldblatt, R. (1981). Review of existing two-lane, two-way rural road computer simulation models.
  12. Lee, J., Choi, Y., Yoon, Y. and Yoon, H. (1993). "Development of two-lane, two-way highway simulation program (TWOPAS) for Korean condition." Journal of Korean Society of Transportation, Vol. 11, No. 1, pp. 23-36 (in Korean).
  13. May, A. D., Botha, J. L. and Bryant, R. S. (1980). "A decisionmaking framework for evaluation of climbing lanes on two-lane, two-way rural roads." Institute of Transportation Studies, University of California, FHWA & CALTRANS.
  14. Nagel, K. (1996). Particle hopping models and traffic flow theory, Physical Review E. Copyright by The American Physical Society.
  15. Nagel, K. and Schreckenberg, M. (1992). "A cellular automaton model for freeway traffic." Journal of Physics Issue 2, pp. 2221-2229.
  16. Nagel, K., Stretz, P., Pieck, M., Leckey, S. and Donnelly, R., Barrett, C. L. (1999). TRANSIMS traffic flow characteristics.
  17. Rickert, M., Nagel, K., Schreckenberg, M. and Latour, A. (1996). "Two lane traffic simulations using cellular automata." Physica A 231 pp. 534-550. https://doi.org/10.1016/0378-4371(95)00442-4
  18. Schadschneider, A. and Schreckenberg, M. (1997). "Traffic models with 'slow-to- start' rules." Ann. Physic 6, p. 541.
  19. Schreckenberg, M. (2002). "Simulation of the Autobahn Traffic in North Rhine-West phalia." International Symposium on Transport Simulation, pp. 193-200.
  20. Takayasu, M. and Takayasu, H. (1993). "Phase transition and 1/f type noise in one dimensional asymmetric particle dynamics." Fractals, Vol. 1, Issue 4, pp. 860-866. https://doi.org/10.1142/S0218348X93000885
  21. TRB (1978). Grade effects on traffic flow stability and capacity, NCHRP Report 185.
  22. Wagner, P., Nagel, K. and Wolf, D. E. (1997). "Realistic multi-lane traffic rules for cellular automata." Physica A 234 pp. 687-698. https://doi.org/10.1016/S0378-4371(96)00308-1
  23. Yoon, B. (2009). "Development of lane-changing model for two-lane freeway traffic based on CA." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 3D, pp. 329-334 (in Korean).
  24. Yoon, B. (2011). "Development of lane-lane highway vehicle model based on discrete time and space." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 6D, pp. 785-791 (in Korean).