• Title/Summary/Keyword: Yamabe soliton

Search Result 20, Processing Time 0.02 seconds

3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics

  • Siddiqi, Mohammed Danish;Chaubey, Sudhakar Kumar;Ramandi, Ghodratallah Fasihi
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.645-660
    • /
    • 2021
  • This paper examines the behavior of a 3-dimensional trans-Sasakian manifold equipped with a gradient generalized quasi-Yamabe soliton. In particular, It is shown that α-Sasakian, β-Kenmotsu and cosymplectic manifolds satisfy the gradient generalized quasi-Yamabe soliton equation. Furthermore, in the particular case when the potential vector field ζ of the quasi-Yamabe soliton is of gradient type ζ = grad(ψ), we derive a Poisson's equation from the quasi-Yamabe soliton equation. Also, we study harmonic aspects of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds sharing a harmonic potential function ψ. Finally, we observe that 3-dimensional compact trans-Sasakian manifold admits the gradient generalized almost quasi-Yamabe soliton with Hodge-de Rham potential ψ. This research ends with few examples of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds.

Some Triviality Characterizations on Gradient Almost Yamabe Solitons

  • Uday Chand De;Puja Sarkar;Mampi Howlader
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.639-645
    • /
    • 2023
  • An almost Yamabe soliton is a generalization of the Yamabe soliton. In this article, we deduce some results regarding almost gradient Yamabe solitons. More specifically, we show that a compact almost gradient Yamabe soliton having non-negative Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a non-negative potential function and scalar curvature bound admitting an integral condition is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe solitons.

The Geometry of 𝛿-Ricci-Yamabe Almost Solitons on Paracontact Metric Manifolds

  • Somnath Mondal;Santu Dey;Young Jin Suh;Arindam Bhattacharyya
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.623-638
    • /
    • 2023
  • In this article we study a 𝛿-Ricci-Yamabe almost soliton within the framework of paracontact metric manifolds. In particular we study 𝛿-Ricci-Yamabe almost soliton and gradient 𝛿-Ricci-Yamabe almost soliton on K-paracontact and para-Sasakian manifolds. We prove that if a K-paracontact metric g represents a 𝛿-Ricci-Yamabe almost soliton with the non-zero potential vector field V parallel to 𝜉, then g is Einstein with Einstein constant -2n. We also show that there are no para-Sasakian manifolds that admit a gradient 𝛿-Ricci-Yamabe almost soliton. We demonstrate a 𝛿-Ricci-Yamabe almost soliton on a (𝜅, 𝜇)-paracontact manifold.

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

YAMABE SOLITONS ON KENMOTSU MANIFOLDS

  • Hui, Shyamal Kumar;Mandal, Yadab Chandra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.321-331
    • /
    • 2019
  • The present paper deals with a study of infinitesimal CL-transformations on Kenmotsu manifolds, whose metric is Yamabe soliton and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Among others, we find a necessary and sufficient condition of a Yamabe soliton on Kenmotsu manifold with respect to CL-connection to be Yamabe soliton on Kenmotsu manifold with respect to Levi-Civita connection. We found the necessary and sufficient condition for the Yamabe soliton structure to be invariant under Schouten-Van Kampen connection. Finally, we constructed an example of steady Yamabe soliton on 3-dimensional Kenmotsu manifolds with respect to Schouten-Van Kampen connection.

YAMABE AND RIEMANN SOLITONS ON LORENTZIAN PARA-SASAKIAN MANIFOLDS

  • Chidananda, Shruthi;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.213-228
    • /
    • 2022
  • In the present paper, we aim to study Yamabe soliton and Riemann soliton on Lorentzian para-Sasakian manifold. First, we proved, if the scalar curvature of an 𝜂-Einstein Lorentzian para-Sasakian manifold M is constant, then either 𝜏 = n(n-1) or, 𝜏 = n-1. Also we constructed an example to justify this. Next, it is proved that, if a three dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton for V is an infinitesimal contact transformation and tr 𝜑 is constant, then the soliton is expanding. Also we proved that, suppose a 3-dimensional Lorentzian para-Sasakian manifold admits a Yamabe soliton, if tr 𝜑 is constant and scalar curvature 𝜏 is harmonic (i.e., ∆𝜏 = 0), then the soliton constant λ is always greater than zero with either 𝜏 = 2, or 𝜏 = 6, or λ = 6. Finally, we proved that, if an 𝜂-Einstein Lorentzian para-Sasakian manifold M represents a Riemann soliton for the potential vector field V has constant divergence then either, M is of constant curvature 1 or, V is a strict infinitesimal contact transformation.

ALMOST QUASI-YAMABE SOLITONS ON LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS-[(LCS)n]

  • Jun, Jae-Bok;Siddiqi, Mohd. Danish
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.521-536
    • /
    • 2020
  • The object of the present paper is to study of Almost Quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons on an Lorentzian concircular structure manifolds briefly say (LCS)n-manifolds under infinitesimal CL-transformations and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Also we obtained a necessary and sufficient condition of an almost quasi-Yamabe soliton with respect to the CL-connection to be an almost quasi-Yamabe soliton on (LCS)n-manifolds with respect to Levi-Civita connection. Finally, we construct an example of steady almost quasi-Yamabe soliton on 3-dimensional (LCS)n-manifolds.

Almost Kenmotsu Metrics with Quasi Yamabe Soliton

  • Pradip Majhi;Dibakar Dey
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.97-104
    • /
    • 2023
  • In the present paper, we characterize, for a class of almost Kenmotsu manifolds, those that admit quasi Yamabe solitons. We show that if a (k, 𝜇)'-almost Kenmotsu manifold admits a quasi Yamabe soliton (g, V, 𝜆, 𝛼) where V is pointwise collinear with 𝜉, then (1) V is a constant multiple of 𝜉, (2) V is a strict infinitesimal contact transformation, and (3) (£Vh')X = 0 holds for any vector field X. We present an illustrative example to support the result.

THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

  • Pankaj, Pankaj;Chaubey, Sudhakar K.;Prasad, Rajendra
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.613-626
    • /
    • 2021
  • The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and 𝜂-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.