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Abstract. The aim of this paper is to characterize a Kenmotsu 3-manifold whose metric

is either a Ricci-Yamabe soliton or gradient Ricci-Yamabe soliton. Finally, we verify the

obtained results by an example.

1. Introduction

Hamilton introduced Yamabe flow in 1982 [8] at the same time he introduced
Ricci flow. Ricci solitons and Yamabe solitons are the limit of the solutions of
Ricci flow and Yamabe flow respectively. In dimension n = 2 the Yamabe soliton
is equivalent to the Ricci soliton. However, in dimension n > 2, the Yamabe and
Ricci solitons do not agree as the Yamabe soliton preserves the conformal class of
the metric but the Ricci soliton does not in general.

Over the past twenty years the theory of geometric flows, such as Ricci flow and
Yamabe flow has been the focus of attention of many geometers. Recently, in 2019,
Guler and Crasmareanu [7] introduced the study of a new geometric flow which is a
scalar combination of Ricci and Yamabe flows under the name Ricci-Yamabe map.
This is also called the Ricci-Yamabe flow of type (α, β). The Ricci-Yamabe flow
is an evolution equation for the metrics on the Riemannian or semi-Riemannian
manifolds defined as [7]

(1.1)
∂

∂t
g(t) = −2αRic(t) + βr(t)g(t), g0 = g(0).

A solution to the Ricci-Yamabe flow is called Ricci-Yamabe soliton if it depends
only on one parameter group of diffeomorphism and scaling. A Ricci-Yamabe soliton
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on a Riemannian manifold (M, g) consists of data (g, V, λ, α, β) satisfying

(1.2) £V g + 2αS + (2λ− βr)g = 0,

where £V is the Lie-derivative, S is the Ricci tensor, r is the scalar curvature and
λ, α, β ∈ R. If V is the gradient of a smooth function f on M , then the above
soliton is called the gradient Ricci-Yamabe soliton and then equation (1.2) reduces
to

(1.3) ∇2f + αS = (λ−
1

2
βr)g,

where ∇2f is the Hessian of f .
The Ricci-Yamabe soliton is said to be expanding, steady, or shrinking according

to whether λ is negative, zero, or positive. It is called an almost Ricci-Yamabe
soliton if α, β and λ are smooth functions on M . A Ricci-Yamabe soliton is said to
be a [5]

• Ricci soliton [8] if α = 1, β = 0.

• Yamabe soliton[9] if α = 0, β = 1.

• Einstein soliton [2] if α = 1, β = −1.

• ρ−Einstein soliton [3] if α = 1, β = −2ρ.

When α 6= 0, 1, a Ricci-Yamabe soliton is proper. All of these classifications apply
to gradient Ricci-Yamabe solitons as well.

The paper is organized as follows. After preliminaries in Section 2, we con-
sider Ricci-Yamabe solitons on Kenmotsu 3-manifolds in Section 3. In Section 4
we study Ricci-Yamabe solitons on Kenmotsu 3-manifolds with η-parallel Ricci ten-
sors. Section 5 is devoted to studying gradient Ricci-Yamabe solitons on Kenmotsu
3-manifolds. Finally, in Section 6 we construct an example of a 3-dimensional Ken-
motsu manifold admitting a Ricci-Yamabe soliton.

2. Preliminaries

An almost contact structure [1] on a (2n + 1)-dimensional smooth manifold
M2n+1 is a triplet (φ, ξ, η), where φ is a (1, 1)-type tensor, ξ a global vector field
and η a 1-form, such that

(2.1) φ2 = −id+ η ⊗ ξ, η(ξ) = 1,

where ‘id’ denotes the identity mapping and relation (2.1) implies that φ(ξ) = 0,
η ◦φ = 0 and rank(φ) = 2n. The almost contact structure induces a natural almost
complex structure J on the product manifold M × R defined by J(U, λd/dt) =
(φU−λξ, η(U)d/dt), where U is tangent to M , t the coordinate of R and λ a smooth
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function on M × R. The almost contact structure is said to be normal [12] if the
almost complex structure J is integrable or equivalently [φ, φ] + 2dη ⊗ ξ vanishes,
where [φ, φ] is the Nijenhuis torsion of φ. Let g be a compatible Riemannian metric
with (φ, ξ, η), that is, let

(2.2) g(φU, φV ) = g(U, V )− η(U)η(V )

or equivalently, Φ(U, V ) = g(U, φV ) along with g(U, ξ) = η(U) for all U, V ∈ χ(M).
With this, M is an almost contact metric manifold equipped with an almost contact
metric structure (φ, ξ, η, g). An almost contact metric manifold is called a Kenmotsu
manifold if it satisfies

(2.3) (∇Uφ)V = g(φU, V )ξ − η(V )φU

for all U, V ∈ χ(M), where ∇ is Levi-Civita connection of the Riemannian metric.
A Kenmotsu manifold is normal but not Sasakian. Moreover, it is also not compact
since from the formula (2.3) we get

(2.4) ∇Uξ = U − η(U)ξ,

which gives divξ = 2n. A conformal change g∗ of a Riemannian metric g is called a
concircular transformation [14] if geodesic circles of g are transformed into geodesic
circles of g∗. Here a geodesic circle means a curve whose first curvature is con-
stant and whose second curvature is identically zero. A cosymplectic structure is
defined to be a normal almost contact metric structure (φ, ξ, η, g) with both the
fundamental 2-form Φ and the 1-form η is closed. An almost contact metric struc-
ture is cosymplectic if and only if ∇φ = 0. In [11], Kirichenko obtained the class
of Kenmotsu manifolds from cosymplectic manifolds by the canonical concircular
transformations. A Kenmotsu manifold is of constant curvature -1 if and only if it
is canonically concircular to Cn × R[11].

For a (2n+ 1)-dimensional Kenmotsu manifold, the following formulas hold:

(2.5) R(U, V )ξ = η(U)V − η(V )U,

(2.6) (∇Uη)V = g(U, V )− η(U)η(V ),

(2.7) S(ξ, ξ) = g(Qξ, ξ) = −2n

for any U, V ∈ χ(M), where S is the Ricci tensor and Q is the Ricci operator.
From [4], we know that for a 3-dimensional Kenmotsu manifold

R(U, V )W =
r + 4

2
[g(V,W )U − g(U,W )V ]

−
r + 6

2
[g(V,W )η(U)ξ − g(U,W )η(V )ξ

+η(V )η(W )U − η(U)η(W )V ],(2.8)
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(2.9) QU =
1

2
[(r + 2)U − (r + 6)η(U)ξ],

(2.10) S(U, V ) =
1

2
[(r + 2)g(U, V )− (r + 6)η(U)η(V )],

where R is the curvature tensor and r is the scalar curvature of the manifold M .
An almost contact metric manifold is said to be η-Einstein if the Ricci tensor

S satisfies

(2.11) S(V,W ) = ag(V,W ) + bη(V )η(W )

for any vector field V ,W on M and arbitrary functions a, b on M . An η-Einstein
manifold with b vanishing and a constant is obviously an Einstein manifold. An
η-Einstein manifold is said to be proper η-Einstein if b 6= 0.

Three-dimensional Kenmotsu manifold have been studied in the papers ([4],
[13]).

Lemma 2.1.([13]) On any three-dimensional Kenmotsu manifold (M3, φ, ξ, η, g)
we have

(2.12) ξr = −2(r + 6).

Lemma 2.2.([4]) A 3-dimensional Riemannian manifold is a manifold of constant

sectional curvature -1 if and only if the scalar curvature r = −6.

Lemma 2.3.(Proposition 8 of ([10]) Let M be an η-Einstein Kenmotsu manifold

S = ag + bη ⊗ η for scalars a and b. If either a or b is constant then the manifold

becomes an Einstein manifold.

3. Ricci-Yamabe Solitons on Kenmotsu 3-manifolds

Assume that the Kenmotsu 3-manifold admits a proper Ricci-Yamabe soliton
(g, ξ, λ, α, β). Then the relation (1.2) yields

(3.1) (£ξg)(U, V ) + 2αS(U, V ) + (2λ− βr)g(U, V ) = 0.

In Kenmotsu 3-manifolds

(£ξg)(U, V ) = g(∇Uξ, V ) + g(U,∇V ξ)(3.2)

= 2[g(U, V )− η(U)η(V )].

Using (3.2) in (3.1), we get

(3.3) S(U, V ) =
1

α
[(
β

2
r − λ− 1)g(U, V ) + η(U)η(V )],



Ricci-Yamabe Solitons and Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds 817

which implies

(3.4) QU =
1

α
[(
β

2
r − λ− 1)U + η(U)ξ].

Hence we can state the following theorem using Lemma 2.3 :
Theorem 3.1. A proper Ricci-Yamabe soliton on a 3-dimensional Kenmotsu man-

ifold is an Einstein manifold.

4. Ricci-Yamabe Solitons on Kenmotsu 3-manifolds with η-parallel Ricci
Tensor

In this section we study Ricci-Yamabe solitons on Kenmotsu 3-manifolds with
η-parallel Ricci tensor. A Kenmotsu manifold is said to have η-parallel Ricci tensor
if [6]

(4.1) g((∇V Q)U,W ) = 0

for all smooth vector fields U, V,W .
In Kenmotsu 3-manifolds

(∇V Q)U = ∇V QU −Q(∇V U)

=
1

α
[
β

2
(V r)U + ((∇V η)U)ξ + η(U)∇V ξ]

=
1

α
[
β

2
(V r)U + g(U, V )ξ + η(U)V − 2η(U)η(V )ξ].(4.2)

Using (4.2) in (4.1), we get

(4.3)
1

α
[
β

2
(V r)g(U,W ) + g(U, V )η(W ) + g(V,W )η(U)− 2η(U)η(V )η(W )] = 0.

Putting V = ξ in (4.3) and using Lemma 2.1 we obtain

(4.4)
β

α
(r + 6)g(U,W ) = 0.

If α = 1, then (4.4) implies either β = 0 or, r = −6.

Case I: If β = 0 and α = 1, then Ricci-Yamabe soliton becomes Ricci soliton.
Case II: If r = −6, then from Lemma 2.2, the manifold becomes a manifold of
constant sectional curvature -1.
Hence we conclude the following:
Theorem 4.1. If a 3-dimensional Kenmotsu manifold admits a Ricci-Yamabe

soliton with η-parallel Ricci tensor, then either it is a Ricci soliton or it is a manifold

of constant sectional curvature -1, provided α = 1.
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5. Gradient Ricci-Yamabe Solitons on Kenmotsu 3-manifolds

Suppose a Kenmotsu 3-manifold admits the gradient Ricci-Yamabe soliton.
Then from equation (1.3), we get

(5.1) ∇UDf = (λ−
1

2
βr)U − αQU.

Differentiating (5.1) covariantly along any vector field V , we get

(5.2) ∇V ∇UDf = (λ −
1

2
βr)∇V U −

β

2
(V r)U − α∇V QU.

Interchanging U and V in the above equation, we infer

(5.3) ∇U∇V Df = (λ−
1

2
βr)∇UV −

β

2
(Ur)V − α∇UQV.

Hence from the above equations, we get

(5.4) R(U, V )Df =
β

2
[(V r)U − (Ur)V ]− α[(∇UQ)V − (∇V Q)U ].

Now, in 3-dimension Kenmotsu manifolds

(∇UQ)V − (∇V Q)U =
1

2
[(Ur)V − (Ur)η(V )ξ − (V r)U + (V r)η(U)ξ]

−(
r

2
+ 3)[η(Y )X − η(X)Y ].(5.5)

Using (5.5) in (5.4), we get

R(U, V )Df =
β

2
[(V r)U − (Ur)V ]

−
α

2
[(Ur)V − (Ur)η(V )ξ − (V r)U + (V r)η(U)ξ

−(r + 6){η(V )U − η(U)V }].(5.6)

Contracting (5.6) and using Lemma 2.1, we get

(5.7) S(V,Df) = (β +
α

2
)(V r).

Again, replacing U by Df in (2.10), we get

(5.8) S(V,Df) = (
r

2
+ 1)(V f)− (

r

2
+ 3)η(V )(ξf).

In view of (5.7) and (5.8) we infer

(5.9) (
r

2
+ 1)(V f)− (

r

2
+ 3)η(V )(ξf) = (β +

α

2
)(V r).
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Putting V = ξ in the above equation, we get

(5.10) ξf = (r + 6)(β +
α

2
).

Taking inner product of (5.7) with the vector field ξ, we get

(5.11) η(V )(Uf)− η(U)(V f) =
β

2
[(V r)η(U) − (Ur)η(V )].

Putting U = ξ in (5.11) and using Lemma 2.1, we get

(5.12) V f = −
β

2
(V r) +

α

2
(r + 6)η(V ).

Using (5.10) and (5.12) in (5.9), we obtain

(5.13) (
β

2
r + 3β + α)[(V r) + 2(r + 6)η(V )] = 0.

Hence above equation implies either, β
2 r + 3β + α = 0 or, V r + 2(r + 6)η(V ) = 0.

Case I: If β
2 r + 3β + α = 0, then r is constant.

Case II: If V r = −2(r + 6)η(V ). Using this in (5.12), we get

(5.14) Df = (β +
α

2
)(r + 6)ξ,

which implies

(5.15) ∇ξDf = −2(β +
α

2
)(r + 6)ξ.

Using the above equation in (5.1), we get

(5.16) (
3

2
β + α)r = −(12β + 8α+ λ),

which implies r is constant.
Thus, we state the following:
Theorem 5.1. If the metric of a Kenmotsu 3-manifold M is a gradient Ricci-

Yamabe soliton, then the scalar curvature is constant. If we take β = 1 and α = 0,
then both cases implies r = −6. Then from Lemma 2.2, we say that it is a manifold
of constant sectional curvature -1.
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6. Example

We consider the 3-dimensional manifold M = {(x, y, z) ∈ R
3, z 6= 0}, where

(x, y, z) are the standard coordinate of R3. Let {e1, e2, e3} be a linearly independent
global frame on M given by

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z
.

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(W ) = g(W, e3), for all W ∈ χ(M) and φ be the
(1, 1)-tensor defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Then using the linearity of φ and g, we get

φ2W = −W + η(W )e3, η(e3) = 1,

g(φV, φW ) = g(V,W )− η(V )η(W )

for any V,W ∈ χ(M).
Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to the metric g. Then we

have
[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

The Riemannian connection ∇ of the metric g and using Koszul’s formula , we
have

∇e1e1 = −e3,∇e1e2 = 0,∇e1e3 = e1,

∇e2e1 = 0,∇e2e2 = −e3,∇e2e3 = e2,

∇e3e1 = 0,∇e3e2 = 0,∇e3e3 = 0.

For the above we see that ∇W ξ = W − η(W )ξ for all W ∈ χ(M). Hence the
manifold is a Kenmotsu manifold.

Now, we have

(6.1) R(U, V )W = ∇U∇V W −∇V ∇UW −∇[U,V ]W.

With the help of the above results and using (6.1), we obtain

R(e1, e2)e3 = 0, R(e1, e2)e2 = −e1, R(e1, e2)e1 = e2,
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R(e2, e3)e3 = −e2, R(e3, e2)e2 = −e3, R(e3, e1)e1 = −e3,

R(e3, e1)e3 = e1.

From the above, we can easily calculate the non-vanishing components of the Ricci
tensor S as follows:

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2.

Hence from the above, we get

r = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6,

where r is the scalar curvature. From (3.3) we obtain

S(e1, e1) = S(e2, e2) = S(e3, e3) = −
1

α
(3β + λ).

Therefore λ = 2α−3β. Hence it is Ricci-Yamabe soliton on Kenmotsu 3-manifolds.
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