DOI QR코드

DOI QR Code

YAMABE SOLITONS ON KENMOTSU MANIFOLDS

  • Received : 2018.02.14
  • Accepted : 2018.05.24
  • Published : 2019.01.31

Abstract

The present paper deals with a study of infinitesimal CL-transformations on Kenmotsu manifolds, whose metric is Yamabe soliton and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Among others, we find a necessary and sufficient condition of a Yamabe soliton on Kenmotsu manifold with respect to CL-connection to be Yamabe soliton on Kenmotsu manifold with respect to Levi-Civita connection. We found the necessary and sufficient condition for the Yamabe soliton structure to be invariant under Schouten-Van Kampen connection. Finally, we constructed an example of steady Yamabe soliton on 3-dimensional Kenmotsu manifolds with respect to Schouten-Van Kampen connection.

Keywords

References

  1. E. Barbosa and E. Ribeiro, Jr., On conformal solutions of the Yamabe flow, Arch. Math. (Basel) 101 (2013), no. 1, 79-89. https://doi.org/10.1007/s00013-013-0533-0
  2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
  3. D. Chakraborty, V. N. Mishra, and S. K. Hui, Ricci solitons on three dimensional ${\beta}$-Kenmotsu manifolds with respect to Schouten-Van Kampen connection, J. Ultra Scientist of Physical Sciences 30 (2018), no. 1, 86-91. https://doi.org/10.22147/jusps-A/300110
  4. S. Debnath and A. Bhattacharyya, Second order parallel tensor in trans-Sasakian manifolds and connection with Ricci soliton, Lobachevskii J. Math. 33 (2012), no. 4, 312-316. https://doi.org/10.1134/S1995080212040075
  5. K. Erken, Yamabe solitons on three-dimensional normal almost para-contact metric manifolds, arXiv: 1708. 04882v2. [math. DG] (2017).
  6. R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
  7. R. S. Hamilton, Lectures on geometric flows, unpublished manuscript, 1989.
  8. S. K. Hui and D. Chakraborty, Infinitesimal CL-transformations on Kenmotsu manifolds, Bangmod Int. J. Math. and Comp. Sci. 3 (2017), 1-9.
  9. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
  10. S. Koto and M. Nagao, On an invariant tensor under a CL-transformation, Kodai Math. Sem. Rep. 18 (1966), 87-95. https://doi.org/10.2996/kmj/1138845189
  11. Z. Olszak, The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31-42. https://doi.org/10.2298/PIM1308031O
  12. J. A. Oubina New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
  13. J. A. Schouten and E. R. van Kampen, Zur Einbettungs und Krummungstheorie nichtholonomer Gebilde, Math. Ann. 103 (1930), no. 1, 752-783. https://doi.org/10.1007/BF01455718
  14. A. A. Shaikh, F. R. Al-Solamy, and H. Ahmad, Some transformations on Kenmotsu manifolds, SUT J. Math. 49 (2013), no. 2, 109-119.
  15. S. S. Shukla and M. K. Shukla, On $\phi$-Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math. 39 (2009), no. 2, 89-95.
  16. K. Takamatsu and H. Mizusawa, On infinitesimal CL-transformations of compact normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A No. 3 (1966), 31-39.
  17. S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. (2) 21 (1969), 21-38. https://doi.org/10.2748/tmj/1178243031
  18. Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep. 15 (1963), 176-183. https://doi.org/10.2996/kmj/1138844787
  19. Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. https://doi.org/10.36045/bbms/1473186509
  20. A. Yildiz and A. Sazak, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2017), 93-105. https://doi.org/10.2298/PIM1716093Y