References
- E. Barbosa and E. Ribeiro, Jr., On conformal solutions of the Yamabe flow, Arch. Math. (Basel) 101 (2013), no. 1, 79-89. https://doi.org/10.1007/s00013-013-0533-0
- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
-
D. Chakraborty, V. N. Mishra, and S. K. Hui, Ricci solitons on three dimensional
${\beta}$ -Kenmotsu manifolds with respect to Schouten-Van Kampen connection, J. Ultra Scientist of Physical Sciences 30 (2018), no. 1, 86-91. https://doi.org/10.22147/jusps-A/300110 - S. Debnath and A. Bhattacharyya, Second order parallel tensor in trans-Sasakian manifolds and connection with Ricci soliton, Lobachevskii J. Math. 33 (2012), no. 4, 312-316. https://doi.org/10.1134/S1995080212040075
- K. Erken, Yamabe solitons on three-dimensional normal almost para-contact metric manifolds, arXiv: 1708. 04882v2. [math. DG] (2017).
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
- R. S. Hamilton, Lectures on geometric flows, unpublished manuscript, 1989.
- S. K. Hui and D. Chakraborty, Infinitesimal CL-transformations on Kenmotsu manifolds, Bangmod Int. J. Math. and Comp. Sci. 3 (2017), 1-9.
- K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2) 24 (1972), 93-103. https://doi.org/10.2748/tmj/1178241594
- S. Koto and M. Nagao, On an invariant tensor under a CL-transformation, Kodai Math. Sem. Rep. 18 (1966), 87-95. https://doi.org/10.2996/kmj/1138845189
- Z. Olszak, The Schouten-van Kampen affine connection adapted to an almost (para) contact metric structure, Publ. Inst. Math. (Beograd) (N.S.) 94(108) (2013), 31-42. https://doi.org/10.2298/PIM1308031O
- J. A. Oubina New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
- J. A. Schouten and E. R. van Kampen, Zur Einbettungs und Krummungstheorie nichtholonomer Gebilde, Math. Ann. 103 (1930), no. 1, 752-783. https://doi.org/10.1007/BF01455718
- A. A. Shaikh, F. R. Al-Solamy, and H. Ahmad, Some transformations on Kenmotsu manifolds, SUT J. Math. 49 (2013), no. 2, 109-119.
-
S. S. Shukla and M. K. Shukla, On
$\phi$ -Ricci symmetric Kenmotsu manifolds, Novi Sad J. Math. 39 (2009), no. 2, 89-95. - K. Takamatsu and H. Mizusawa, On infinitesimal CL-transformations of compact normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A No. 3 (1966), 31-39.
- S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. (2) 21 (1969), 21-38. https://doi.org/10.2748/tmj/1178243031
- Y. Tashiro and S. Tachibana, On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep. 15 (1963), 176-183. https://doi.org/10.2996/kmj/1138844787
- Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. https://doi.org/10.36045/bbms/1473186509
- A. Yildiz and A. Sazak, f-Kenmotsu manifolds with the Schouten-van Kampen connection, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2017), 93-105. https://doi.org/10.2298/PIM1716093Y