References
- C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen 78 (2011), no. 1, 235-243. https://doi.org/10.5486/PMD.2011.4797
- C. L. Bejan and M. Crasmareanu, Parallel second-order tensors on Vaisman manifolds, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 2, 1750023, 8 pp.
- S. Brendle and R. Schoen, Curvature, sphere theorems, and the Ricci flow, Bull. Amer. Math. Soc. (N.S.) 48 (2011), no. 1, 1-32. https://doi.org/10.1090/S0273-0979-2010-01312-4
- C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
- M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 15 (1988), no. 6, 526-531.
-
S. Chandra, S. K. Hui, and A. A. Shaikh, Second order parallel tensors and Ricci solitons on
$(LCS)_n$ -manifolds, Commun. Korean Math. Soc. 30 (2015), no. 2, 123-130. https://doi.org/10.4134/CKMS.2015.30.2.123 - M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi Einstein manifolds, Indian J. Pure Appl. Math. 43 (2012), no. 4, 359-369. https://doi.org/10.1007/s13226-012-0022-3
-
L. Das, Second order parallel tensors on
${\alpha}$ -Sasakian manifold, Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 23 (2007), no. 1, 65-69. - L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), no. 2, 297-306. https://doi.org/10.1090/S0002-9947-1923-1501245-6
- R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. https://doi.org/10.4310/jdg/1214436922
- R. S. Hamilton, The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988.
-
S. K. Hui, On
$\phi$ -pseudo symmetries of$(LCS)_n$ -manifolds, Kyungpook Math. J. 53 (2013), no. 2, 285-294. https://doi.org/10.5666/KMJ.2013.53.2.285 -
S. K. Hui and M. Atceken, Contact warped product semi-slant submanifolds of
$(LCS)_n$ -manifolds, Acta Univ. Sapientiae Math. 3 (2011), no. 2, 212-224. -
S. K. Hui, M. Atceken, and S. Nandy, Contact CR-warped product submanifolds of
$(LCS)_n$ -manifolds, Acta Math. Univ. Comenian. (N.S.) 86 (2017), no. 1, 101-109. -
S. K. Hui, M. Atceken, and T. Pal, Warped product pseudo slant submanifolds
$(LCS)_n$ -manifolds, New Trends in Math. Sci. 5 (2017), 204-212. -
S. K. Hui and D. Chakraborty,
$\eta$ -Ricci solitons on$\eta$ -Einstein$(LCS)_n$ -manifolds, Acta Univ. Palacki. Olomuc., Fac. Rer. Nat. Mathematica 55 (2016), no. 2, 101-109. -
S. K. Hui and D. Chakraborty, Some types of Ricci solitons on
$(LCS)_n$ -manifolds, Journal of Mathematical Sciences: Advances and Applications 37 (2016), 1-17. -
S. K. Hui, R. S. Lemence, and D. Chakraborty, Ricci solitons on Ricci pseudosymmetric
$(LCS)_n$ -manifolds, arXiv:1707.03618v1 [math.DG] 12 Jul 2017. -
S. K. Hui, R. Prasad, and T. Pal, Ricci solitons on submanifolds of
$(LCS)_n$ -manifolds, to appear in Ganita, Bharat Ganit Parishad. - X. Jia, Second order parallel tensors on quasi-constant curvature manifolds, Chinese Quart. J. Math. 17 (2002), no. 2, 101-105. https://doi.org/10.3969/j.issn.1002-0462.2002.02.019
- M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290. https://doi.org/10.1007/BF01354288
- H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Ann. of Math. (2) 27 (1925), no. 2, 91-98. https://doi.org/10.2307/1967964
- K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), no. 2, 151-156.
- K. Matsumoto and I. Mihai, On a certain transformation in a Lorentzian para-Sasakian manifold, Tensor (N.S.) 47 (1988), no. 2, 189-197.
- B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
- G. Perelman, The entropy formula for the Ricci ow and its geometric applications, arXiv:math/0211159 [Math.DG] 2002 (2002), 1-39.
- G. Perelman, Ricci flow with surgery on three manifolds, arXiv:math/0303109 [Math.DG] 2003 (2013), 1-22.
- A. A. Shaikh, On Lorentzian almost paracontact manifolds with a structure of the concircular type, Kyungpook Math. J. 43 (2003), no. 2, 305-314.
-
A. A. Shaikh, Some results on
$(LCS)_n$ -manifolds, J. Korean Math. Soc. 46 (2009), no. 3, 449-461. https://doi.org/10.4134/JKMS.2009.46.3.449 -
A. A. Shaikh and H. Ahmad, Some transformations on
$(LCS)_n$ -manifolds, Tsukuba J. Math. 38 (2014), no. 1, 1-24. https://doi.org/10.21099/tkbjm/1407938669 - A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2, 129-132. https://doi.org/10.3844/jmssp.2005.129.132
- A. A. Shaikh and K. K. Baishya, On concircular structure spacetimes - II, Amer. J. App. Sci. 3 (2006), no. 4, 1790-1794. https://doi.org/10.3844/ajassp.2006.1790.1794
-
A. A. Shaikh, T. Basu, and S. Eyasmin, On locally
$\phi$ -symmetric$(LCS)_n$ -manifolds, Int. J. Pure Appl. Math. 41 (2007), no. 8, 1161-1170. -
A. A. Shaikh, T. Basu, and S. Eyasmin, On the existence of
$\phi$ -recurrent$(LCS)_n$ -manifolds, Extracta Math. 23 (2008), no. 1, 71-83. -
A. A. Shaikh and T. Q. Binh, On weakly symmetric
$(LCS)_n$ -manifolds, J. Adv. Math. Stud. 2 (2009), no. 2, 103-118. - A. A. Shaikh and U. C. De, On 3-dimensional LP-Sasakian manifolds, Soochow J. Math. 26 (2000), no. 4, 359-368.
-
A. A. Shaikh and S. K. Hui, On generalized
$\phi$ -recurrent$(LCS)_n$ -manifolds, AIP Conference Proceedings 1309 (2010), 419-429. -
A. A. Shaikh, Y. Matsuyama, and S. K. Hui, On invariant submanifolds of
$(LCS)_n$ -manifolds, J. Egyptian Math. Soc. 24 (2016), no. 2, 263-269. https://doi.org/10.1016/j.joems.2015.05.008 - R. Sharma, Second order parallel tensor in real and complex space forms, Internat. J. Math. Math. Sci. 12 (1989), no. 4, 787-790. https://doi.org/10.1155/S0161171289000967
- R. Sharma, Second order parallel tensors on contact manifolds, Algebras Groups Geom. 7(1990), no. 2, 145-152.
- R. Sharma, Second order parallel tensors on contact manifolds. II, C. R. Math. Rep. Acad.Sci. Canada 13 (1991), no. 6, 259-264.
- R. Sharma, On the curvature of contact metric manifolds, J. Geom. 53 (1995), no. 1-2,179-190. https://doi.org/10.1007/BF01224050
- H. Singh and Q. Khan, On special weakly symmetric Riemannian manifolds, Publ.Math. Debrecen 58 (2001), no. 3, 523-536.
-
T. Takahashi, Sasakian
${\phi}$ -symmetric spaces, Tohoku Math. J. (2) 29 (1977), no. 1,91-113. https://doi.org/10.2748/tmj/1178240699 - Y. Wang and X. Liu, Second order parallel tensors on almost Kenmotsu manifoldssatisfying the nullity distributions, Filomat 28 (2014), no. 4, 839-847. https://doi.org/10.2298/FIL1404839W
-
S. K. Yadav, S. K. Chaubey, and D. L. Suthar, Some geometric properties of -Riccisolitons and gradient Ricci solitons on
$(LCS)_n$ -manifolds, CUBO: A Math. J. 19 (2017),no. 2, 32-48. -
S. K. Yadav, P. K. Dwivedi, and D. Suthar, On
$(LCS)_{2n+1}$ -manifolds satisfying certainconditions on the concircular curvature tensor, Thai J. Math. 9 (2011), no. 3, 597-603. -
S. K. Yadav, D. L. Suthar, and M. Hailu, On extended generalized
${\phi}$ -recurrent$(LCS)_{2n+1}$ -manifolds, Bol. Soc. Pran. Mat. (3s.) 37 (2019), no. 2, 9-21. - K. Yano, Concircular geometry. I. Concircular transformations, Proc. Imp. Acad. Tokyo16 (1940), 195-200. https://doi.org/10.3792/pia/1195579139