• Title/Summary/Keyword: ${\eta}$-parallel Ricci tensor and Ricci solitons

Search Result 4, Processing Time 0.019 seconds

CERTAIN RESULTS ON THREE-DIMENSIONAL f-KENMOTSU MANIFOLDS WITH CONFORMAL RICCI SOLITONS

  • Mandal, Tarak
    • Korean Journal of Mathematics
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In the present paper, we have studied conformal Ricci solitons on f-Kenmotsu manifolds of dimension three. Also we have studied 𝜙-Ricci symmetry, 𝜂-parallel Ricci tensor, cyclic parallel Ricci tensor and second order parallel tensor in f-Kenmotsu manifolds of dimension three admitting conformal Ricci solitons. Finally, we give an example.

𝜂-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH SOME CURVATURE CONDITIONS

  • Mondal, Ashis
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.705-714
    • /
    • 2021
  • In the present paper, we study 𝜂-Ricci solitons on para-Kenmotsu manifolds with Codazzi type of the Ricci tensor. We study 𝜂-Ricci solitons on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study 𝜂-Ricci solitons on 𝜑-conformally semi-symmetric, 𝜑-Ricci symmetric and conformally Ricci semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a three-dimensional para-Kenmotsu manifold which admits 𝜂-Ricci solitons.

ON 3-DIMENSIONAL LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS

  • Chaubey, Sudhakar Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.303-319
    • /
    • 2019
  • The aim of the present paper is to study the Eisenhart problems of finding the properties of second order parallel tensors (symmetric and skew-symmetric) on a 3-dimensional LCS-manifold. We also investigate the properties of Ricci solitons, Ricci semisymmetric, locally ${\phi}$-symmetric, ${\eta}$-parallel Ricci tensor and a non-null concircular vector field on $(LCS)_3$-manifolds.

THREE-DIMENSIONAL LORENTZIAN PARA-KENMOTSU MANIFOLDS AND YAMABE SOLITONS

  • Pankaj, Pankaj;Chaubey, Sudhakar K.;Prasad, Rajendra
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.613-626
    • /
    • 2021
  • The aim of the present work is to study the properties of three-dimensional Lorentzian para-Kenmotsu manifolds equipped with a Yamabe soliton. It is proved that every three-dimensional Lorentzian para-Kenmotsu manifold is Ricci semi-symmetric if and only if it is Einstein. Also, if the metric of a three-dimensional semi-symmetric Lorentzian para-Kenmotsu manifold is a Yamabe soliton, then the soliton is shrinking and the flow vector field is Killing. We also study the properties of three-dimensional Ricci symmetric and 𝜂-parallel Lorentzian para-Kenmotsu manifolds with Yamabe solitons. Finally, we give a non-trivial example of three-dimensional Lorentzian para-Kenmotsu manifold.