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n-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH
SOME CURVATURE CONDITIONS

AsHIS MONDAL

ABSTRACT. In the present paper, we study 7-Ricci solitons on para-Kenmotsu man-
ifolds with Codazzi type of the Ricci tensor. We study n-Ricci solitons on para-
Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study n-Ricci soli-
tons on ¢-conformally semi-symmetric, @-Ricci symmetric and conformally Ricci
semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a
three-dimensional para-Kenmotsu manifold which admits n-Ricci solitons.

1. Introduction

In 1982, Hamilton [12] introduced the notion of the Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on
a Riemannian manifold

0
5 0u(t) = —2Ri;.
A Ricci soliton is a natural generalization of Einstein metric and defined on a

Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, A) with g a Riemannian
metric, V' a vector field and A a real scalar such that

Lyg+2S+42X\g =0,

where S is a Ricci tensor of M and Ly denotes the Lie derivative operator along
the vector field V. The Ricci soliton is said to be shrinking, steady and expanding
according as A < 0, A = 0, or A > 0, respectively [7]. Ricci solitons have been studied
by many authors, such as [9,10,13] and several authors.

As a generalization of Ricci solitons, the notion of n-Ricci solitons was introduced
by Cho and Kimura [6]. This notion has been studied in [4], for Hopf hypersurfaces
in complex space form. A Ricci soliton is a tuple (g, V, A\, i), where V' is a vector field
on M, A and p are real constants, and ¢ is a Riemannian ( or pseudo-Riemannian)
metric satisfying the equation

Lyg+2542\g+2un®@n=0.

n-Ricci solitons on para-Kenmotsu manifolds were studied by A. M. Blaga [1] and
n-Ricci solitons on Lorentzian Para-Sasakian manifolds were also studied by A. M.
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Blaga [2]. In particular, if 4 = 0, then the notion of n-Ricci solitons (g, V;, A, 1) reduces
to the notion of Ricci solitons (g, V, A). If u # 0, then the n-Ricci solitons are called
proper 7n-Ricci solitons. Gray [11] introduced the notion of Codazzi type of the Ricci
tensor. A pseudo-Riemannian manifold is said to satisfy Codazzi type of the Ricci
tensor if its Ricci tensor S of type (0,2) is non-zero and satisfies the condition

(VxS)(Y, 2) = (Vy5)(X, 2),

which implies that div R=0, where div denotes divergence and R is the Riemannian
curvature tensor of type (1,3). A Riemannian or pseudo-Riemannian manifold (M, g),
n > 3, is said to be semi-symmetric if the curvature condition R.R = 0 holds, where
R denotes the curvature tensor of the manifold. A fundamental study on Riemannian
semi-symmetric manifolds was introduced by Z. I. Szabé [15]. Later E. Boeckx et al. [3]
and O. Kowalski [14] and many others have studied semi-symmetric manifolds. A
contact metric manifold is said to be p-conformally semi-symmetric if C.¢p = 0, where
C is the conformal curvature tensor. Moreover, conformally Ricci semi-symmetric
manifolds, that is C.S = 0, have been studied by Verstraelen [17]. Motivated by the
above studies, in the present paper we consider n-Ricci solitons on para-Kenmotsu
manifolds with the curvature conditions C.po =0 and C.S = 0.

The present paper is organized as follows: After the introduction, we give some
required preliminaries in Section 2. Section 3 contains a brief review of Ricci and
n-Ricci solitons. In Section 4, we study n-Ricci solitons on para-Kenmotsu manifolds
satisfying Codazzi type of the Ricci tensor. In Section 5, we study n-Ricci solitons
on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. Section 6 is devoted to
study n-Ricci solitons on ¢-Ricci symmetric para-Kenmotsu manifolds. In the next
section, we study 7n-Ricci solitons on ¢-conformally semi-symmetric para-Kenmotsu
manifolds. Section 8 deals with the study of n-Ricci solitons on conformally Ricci semi-
symmetric para-Kenmotsu manifolds. In the last section we construct an example of
three-dimensional para-Kenmotsu manifold which admits 7-Ricci solitons.

2. Para-Kenmotsu Manifolds

Let (M, p,n,€, g) be a n-dimensional smooth manifold, where ¢ is an (1,1) tensor
field, ¢ is a vector field, n is an 1-form and ¢ is a pseudo-Riemannian metric on M.
We say that (¢,n,€&, g) is an almost paracontact metric structure on M, if it satisfies
the conditions [1]

(1) P’ X = =X +n(X)¢, n(g) =1,
(2) e&=0, np=0, rank(p)=n—1,
(3) 9(eX,pY) = —g(X,Y) + n(X)n(Y),

for any vector fields X and Y on M.
If, moreover
(4) (Vx@)Y = g(pX,Y)§ = n(Y)pX,

where V denotes the Levi-Civita connection of g, then the almost paracontact metric
structure (p,n,&, g) is called para-Kenmotsu manifold.
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From the definition, it follows that 7 is the g-dual of &:

(5) 9(X,§) = n(X),
¢ is a unitary vector field:
(6) 9(&,8) =1,

and ¢ is a g-skew-symmetric operator. The fundamental 2-form ® of an almost

paracontact metric structure (M, ¢, &, n, g) is defined by ®(X,Y) = g(X, pY). If & =

dn, then the manifold (M, ¢, &, n, g) is called a paracontact metric manifold and g is an

associated metric. An almost paracontact metric manifold is normal if [p, ¢|(X,Y) +

2dn(X,Y)E = 0, where [ip, 0](X,Y) = *[X, Y] + [pX, V] — [0 X, pY] — [ X, pY].
In a para-Kenmotsu manifold, we have the following formulas [18]

(7) Vx{=X —n(X)§,

(8) (Vaxm)Y = g(X,Y) — n(X)n(Y),

(9) R(X,Y)§ =n(X)Y —n(Y)X,

(10) R(& X)Y =n(Y)X — g(X,Y)E,

(11) R(& X)E =X —n(X)E,

(12) S(X. &) = (1= n)n(X),

(13) (Leg)(X,Y) = =2{g(X,Y) = n(X)n(Y)},

where S is the Ricci tensor, R is the Riemannian curvature tensor field and V is the
Levi-Civita connection associated to g.

3. Ricci and 7-Ricci Solitons on (M, ¢, &, 1, g)

Let (M, p,&,n,g) be a paracontact metric manifold. Consider the equation
(14) Leg 425+ Mg +2um®@n =0,

where L is the Lie derivative operator along the vector field £, S is the Ricci curvature
tensor field of the metric g, and A and p are real constants. Writing L¢g in terms of
the Levi-Civita connection V, we get

for all X|Y € x(M), or equivalently:

(16) SXY) =—-(A+1)g(X,Y) — (= Dn(X)n(Y),
for all X|Y € x(M).

The data (g, &, A, 1) which satisfy the equation (14) is said to be an n-Ricci soliton
on M [5]; in particular, if u = 0, (g, &, A) is a Ricci soliton [16] and it is called shrinking,
steady, or expanding according as \ is negative, zero or positive, respectively [19].
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Taking Y = ¢ in (16), we get
(17) S(X,6) = —(A+ pn(X).
Comparing (12) and (17), we have
(18) A+ p=n—1.
In this case, the Ricci operator @ defined by ¢g(QX,Y) = S(X,Y") has the expression:

(19) QX = —(A+1)X — (u— 1n(X)¢.
The above equation yields that
(20) r=-nA+1)—(u—1).

4. n-Ricci solitons on para-Kenmotsu manifolds with Ricci tensor of
Coddazi type

Taking covariant differentiation of (16) with respect to Z we get
(21) (Vz)(X,Y) = —(u— D[(Vzn)(X)n(Y) + (Vz0) (Y )n(X)].

Using (8) in (21) we get
(22)  (V29)(X,Y) = —=(p = V[g(Z, X)n(Y) + 9(Z, Y )n(X) = 2n(X)n(Y )n(Z)).

In view of (22) it follows that

(V29X Y) = (VyS)(Z,X) = —(n = DIg(X, Z)n(Y) + g(Y, Z)n(X)

(23) —9(Z,Y)n(X) — (X, Y)n(Z)].

Since, by hypothesis, the Ricci tensor is of Codazzi type, from (23) we get
(24)  (p= DX, 2)n(Y) + g(Y, Z)n(X) — 9(Z,Y )n(X) — g(X,Y)n(Z)] = 0.

Putting Z=¢ in (24), we get
(25) (1 =D(X)n(Y) = g(X, Y)] = 0,
which yields
(h=1)g(pX, Y) = 0.
From the above it follows that 1 = 1. Using (18) we get A = n — 2. Also from (16)
we have
S(X,)Y)=—-(n—-1)g(X,Y).

Thus we can state the following:

THEOREM 4.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M (p,&,n,g)
admits an n-Ricci soliton whose Ricci tensor is of Coddazi type, then A =n—2,u =1
and the manifold is FEinstein.
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5. n-Ricci Solitons on Para-Kenmotsu manifolds with cyclic parallel
Ricci tensor

This section is devoted to study proper n-Ricci solitons on para-Kenmotsu mani-
folds with cyclic parallel Ricci tensor. Therefore

(26) (VxS)Y,Z)+ (VyS)(Z, X))+ (V2S9)(X,Y) =0,
for all smooth vector fields X,Y, Z € x(M).

Using (3) and (22) in (26) we get

(27) (= 1D)[g(eX, 0Z)n(Y) + g(@Y, 0 Z)n(X) + g(0X, Y )n(Z)] = 0.
Putting X = £ in (27), we get

(28) (1= Dg(¢Y,9pZ)] = 0.
It follows that
(29) =1

Using (18) and above equation we get A = n — 2. Also from (16) we have
Thus we are in a position to state the following:

THEOREM 5.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M (p,&,1,q)
with cyclic parallel Ricci tensor admits n-Ricci soliton, then A =n — 2, u = 1 and the
manifold is Einstein.

6. n-Ricci Solitons on p-Ricci Symmetric Para-Kenmotsu manifolds

A para-Kenmotsu manifold is said to be p-Ricci symmetric if
(30) P*(VxQ)Y =0,

holds for all smooth vector field X, Y. It should be mentioned that (-Ricci symmetric
Sasakian manifolds have been studied in [§].

Taking covariant derivative of (16), we get
(VxQ)Y =VxQY — Q(VxY)
(31) = (= D[g(X,Y)E = (X )n(Y)E + n(Y)X].

Operating ©? on both sides of (31), we get
(32) P (VxQ)Y = —(n— n(Y)p*X.

From (30) and (32) we have
(33) =1
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Also from (18) and (33) we get A = n — 2 and from (16) we have
S(X,Y) = —(n— 1)g(X, V).
Thus we are in position to state the following:

THEOREM 6.1. If a (2n + 1)-dimensional ¢-Ricci symmetric para-Kenmotsu man-
ifold M (p,€&,n,g) admits n-Ricci soliton, then A = n — 2, u = 1 and the manifold is
Einstein.

7. n-Ricci Solitons on p-conformally semi-symmetric Para-Kenmotsu
manifolds

The conformal curvature tensor C' is defined by

C(X,Y)Z =R(X,Y)Z — ﬁ[so/, 7)X — S(X,Z)Y

+9(Y, 2)QX — g(X, Z2)QY]

-
34 Y, 2)X —g(X,2)Y

(34) + g Y DX — g(X.2)Y],

where S is the Ricci tensor, @ is the Ricci operator defined by S(X,Y) = g(QX,Y),
and r is the scalar curvature of the manifold M.

This section is devoted to the study of w-conformally semi-symmetric n-Ricci soli-
tons on para-Kenmotsu manifolds. Then

(35) C.o=0,
from which it follows that
(36) C(X,Y)pZ —o(C(X,Y)Z) = 0.

Putting Z = ¢ in (36), we get
(37) p(C(X,Y)E) = 0.

Putting Z = ¢ in (34) and using (5), (9), (17) and (19) we get
CXY)E=n(X)Y = n(¥)X — —[S(V,€)X ~ S(X,E)Y

+7(Y)QX —n(X)QY]
n(Y)X —n(X)Y]

T Dm-2)

n+ A r
(39) = |1+ 55 g | MY —a)x)
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In view of (37) and (38) we have

n-—+ A r

(39)  PlCXY)) =114 0 ~ o m =

1+

] (X)Y —n(Y)X] = 0.

Replacing X by ¢ X in (39) we get

n—+ A r

n—2 (n-1)n-2) (V)" X = 0.

) [1+

From (40) it follows that

By virtue of (20), we get,

A—pu=2n*—=3n+1.
From (18), we get
A=n(n-—1),
and
p=—(n-1)>
Thus we can state the following:
THEOREM 7.1. If a p-conformally semisymmetric (2n+1)-dimensional para-Kenmotsu

manifold with constant scalar curvature admits n-Ricci solitons, then A = n(n — 1)
and pp = —(n — 1)

8. n-Ricci solitons on conformally Ricci semi-symmetric Para-Kenmotsu
manifolds

In this section we study 7n-Ricci solitons on conformally Ricci semi-symmetric para-
Kenmotsu manifolds, that is

(41) C.S =0,

which implies

(42) (C(X,Y)Z.8)(Z,W) = 0.
From (41) we get

(43) S(CX, V) Z,W)+8(Z,C(X,Y)W)=0.
Using (16) in (43) we get

(44) (1 = DI(CX,Y)Z)n(W) + n(C(X, Y)W )(Z)] = 0.

Putting X =Y = ¢ in (44) we get
(45) (1= D[n(C(E,Y)2) +n(CEY)E)n(Z)] = 0.
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With the help of (38) we find

n(C(&Y)2) =g(C(&Y)Z,E)
= _9(0(57}/){7 Z)
n+ A r

S R ey

(46) = - l9(Y, Z) —=n(Y)n(Z)] = 0.

Also from (46) we have
(47) HO(EY)E) =0,

Using (46) and (47) in (45) we get

n-+ A r

T e T oD =)

(48) (n—1) [9(Y, Z) = n(Y)n(Z)] = 0.

From (48) we obtain

n—+ A r
(49) (n—1) 1+n_2—(n_1)(n_2) 9(pY,pZ) = 0.
Therefore, we get
n+ A r
(50) (b —1) 1+n_2—(n_1)<n_2)]:0.

By virtue of (20), we get

(51) (p—1)N—p—2n*+3n—1)=0.
Hence we can state the following:

THEOREM 8.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M (p,&,n, g)
admits n-Ricci soliton and C.S = 0, then

(p—1) (N —p—2n*+3n—1)=0.

9. Example of 7-Ricci solitons on three-dimensional para-Kenmotsu man-
ifold

We consider the three-dimensional manifold M = {(z,y,z) € R® 2 # 0}, where
(z,y,2) are the standard coordinates in R3. The vector fields

ox’ oy T o y@y 0z’

are linearly independent at each point of M and

el =

le1,e2] = 0, [e1, e3] = ey, [ea, 3] = 2.
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Let g be the Riemannian metric defined by
gler, e3) = g(ea, e3) = gler, e2) =0,
gler,e1) = gles,es) =1, gles, e2) = —1.

Let n be the 1-form defined by 1n(Z) = g(Z,e3) for any Z € x(M) and ¢ be the
(1,1) tensor field defined by p(e1) = eq, p(e2) = €1, p(e3) = 0. Then using the linearity
of ¢ and g we have

nles) =1,  ¢*(2) =Z —n(Z)es,
for any Z, W € x(M). Thus for e3 = &, (¢,&,n,9) defines an almost contact metric
structure on M.
The Riemannian connection V of the metric tensor ¢ is given by Koszul’s formula
which is
29(VxY,Z)=Xg(Y,Z)+Yg(Z, X) — Zg(X,Y)
—9(X,[Y, Z]) = g(V, [X, Z]) + g(Z, [X,Y]).

Using Koszul’s formula we get the following

Ve e3 = ey, Ve e2 =0, Ve e = —es,
V6263 = €2, v62€2 = €3, Vezel = 07
V63€3 = O, Vegeg = O, Vegel =0.

From above we see that the manifold satisfies Vx& = X — n(X)¢E, for e3 = &.
Therefore the structure M(p, &, 7, g) is a three-dimensional para-Kenmotsu manifold.

With the help of the above results it can be verified that

R(ey, ez)es = 0, Res, e3)e3 = —ea, R(ey,e3)es = —ey,
R(el’ 62)62 = €1, R<€27 63)62 = —e€3, R(el, 63)62 = 0,
R(er, e2)er = ey, R(es, e3)er =0, R(eq,e3)e; = es.

Using the expressions of the curvature tensor we find the values of the Ricci tensor
as follows

S(ela 61) = _2a 5(62762) = 27 5(63763) = _2a
S(el, 62) = 0, 5(61, 63) = 07 8(62, 63) =0.
From (16) we obtain S(ej,e;) = —(A+ 1) and S(es,e3) = —(\ + p), therefore A =1
and p = 1. Hence the Theorem 4.1, Theorem 5.1 and Theorem 6.1 are verified.
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