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η-RICCI SOLITONS ON PARA-KENMOTSU MANIFOLDS WITH

SOME CURVATURE CONDITIONS

Ashis Mondal

Abstract. In the present paper, we study η-Ricci solitons on para-Kenmotsu man-
ifolds with Codazzi type of the Ricci tensor. We study η-Ricci solitons on para-
Kenmotsu manifolds with cyclic parallel Ricci tensor. We also study η-Ricci soli-
tons on ϕ-conformally semi-symmetric, ϕ-Ricci symmetric and conformally Ricci
semi-symmetric para-Kenmotsu manifolds. Finally, we construct an example of a
three-dimensional para-Kenmotsu manifold which admits η-Ricci solitons.

1. Introduction

In 1982, Hamilton [12] introduced the notion of the Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on
a Riemannian manifold

∂

∂t
gij(t) = −2Rij.

A Ricci soliton is a natural generalization of Einstein metric and defined on a
Riemannian manifold (M, g). A Ricci soliton is a triple (g, V, λ) with g a Riemannian
metric, V a vector field and λ a real scalar such that

LV g + 2S + 2λg = 0,

where S is a Ricci tensor of M and LV denotes the Lie derivative operator along
the vector field V . The Ricci soliton is said to be shrinking, steady and expanding
according as λ < 0, λ = 0, or λ > 0, respectively [7]. Ricci solitons have been studied
by many authors, such as [9, 10,13] and several authors.

As a generalization of Ricci solitons, the notion of η-Ricci solitons was introduced
by Cho and Kimura [6]. This notion has been studied in [4], for Hopf hypersurfaces
in complex space form. A Ricci soliton is a tuple (g, V, λ, µ), where V is a vector field
on M , λ and µ are real constants, and g is a Riemannian ( or pseudo-Riemannian)
metric satisfying the equation

LV g + 2S + 2λg + 2µη ⊗ η = 0.

η-Ricci solitons on para-Kenmotsu manifolds were studied by A. M. Blaga [1] and
η-Ricci solitons on Lorentzian Para-Sasakian manifolds were also studied by A. M.
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Blaga [2]. In particular, if µ = 0, then the notion of η-Ricci solitons (g, V, λ, µ) reduces
to the notion of Ricci solitons (g, V, λ). If µ 6= 0, then the η-Ricci solitons are called
proper η-Ricci solitons. Gray [11] introduced the notion of Codazzi type of the Ricci
tensor. A pseudo-Riemannian manifold is said to satisfy Codazzi type of the Ricci
tensor if its Ricci tensor S of type (0,2) is non-zero and satisfies the condition

(∇XS)(Y, Z) = (∇Y S)(X,Z),

which implies that div R=0, where div denotes divergence and R is the Riemannian
curvature tensor of type (1,3). A Riemannian or pseudo-Riemannian manifold (M, g),
n ≥ 3, is said to be semi-symmetric if the curvature condition R.R = 0 holds, where
R denotes the curvature tensor of the manifold. A fundamental study on Riemannian
semi-symmetric manifolds was introduced by Z. I. Szabó [15]. Later E. Boeckx et al. [3]
and O. Kowalski [14] and many others have studied semi-symmetric manifolds. A
contact metric manifold is said to be ϕ-conformally semi-symmetric if C.ϕ = 0, where
C is the conformal curvature tensor. Moreover, conformally Ricci semi-symmetric
manifolds, that is C.S = 0, have been studied by Verstraelen [17]. Motivated by the
above studies, in the present paper we consider η-Ricci solitons on para-Kenmotsu
manifolds with the curvature conditions C.ϕ = 0 and C.S = 0.

The present paper is organized as follows: After the introduction, we give some
required preliminaries in Section 2. Section 3 contains a brief review of Ricci and
η-Ricci solitons. In Section 4, we study η-Ricci solitons on para-Kenmotsu manifolds
satisfying Codazzi type of the Ricci tensor. In Section 5, we study η-Ricci solitons
on para-Kenmotsu manifolds with cyclic parallel Ricci tensor. Section 6 is devoted to
study η-Ricci solitons on ϕ-Ricci symmetric para-Kenmotsu manifolds. In the next
section, we study η-Ricci solitons on ϕ-conformally semi-symmetric para-Kenmotsu
manifolds. Section 8 deals with the study of η-Ricci solitons on conformally Ricci semi-
symmetric para-Kenmotsu manifolds. In the last section we construct an example of
three-dimensional para-Kenmotsu manifold which admits η-Ricci solitons.

2. Para-Kenmotsu Manifolds

Let (M,ϕ, η, ξ, g) be a n-dimensional smooth manifold, where ϕ is an (1, 1) tensor
field, ξ is a vector field, η is an 1-form and g is a pseudo-Riemannian metric on M .
We say that (ϕ, η, ξ, g) is an almost paracontact metric structure on M , if it satisfies
the conditions [1]

(1) ϕ2X = −X + η(X)ξ, η(ξ) = 1,

(2) ϕξ = 0, ηϕ = 0, rank(ϕ) = n− 1,

(3) g(ϕX,ϕY ) = −g(X, Y ) + η(X)η(Y ),

for any vector fields X and Y on M .
If, moreover

(4) (∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX,

where ∇ denotes the Levi-Civita connection of g, then the almost paracontact metric
structure (ϕ, η, ξ, g) is called para-Kenmotsu manifold.
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From the definition, it follows that η is the g-dual of ξ:

(5) g(X, ξ) = η(X),

ξ is a unitary vector field:

(6) g(ξ, ξ) = 1,

and ϕ is a g-skew-symmetric operator. The fundamental 2-form Φ of an almost
paracontact metric structure (M,ϕ, ξ, η, g) is defined by Φ(X, Y ) = g(X,ϕY ). If Φ =
dη, then the manifold (M,ϕ, ξ, η, g) is called a paracontact metric manifold and g is an
associated metric. An almost paracontact metric manifold is normal if [ϕ, ϕ](X, Y ) +
2dη(X, Y )ξ = 0, where [ϕ, ϕ](X, Y ) = ϕ2[X, Y ] + [ϕX,ϕY ]− ϕ[ϕX,ϕY ]− ϕ[X,ϕY ].

In a para-Kenmotsu manifold, we have the following formulas [18]

(7) ∇Xξ = X − η(X)ξ,

(8) (∇Xη)Y = g(X, Y )− η(X)η(Y ),

(9) R(X, Y )ξ = η(X)Y − η(Y )X,

(10) R(ξ,X)Y = η(Y )X − g(X, Y )ξ,

(11) R(ξ,X)ξ = X − η(X)ξ,

(12) S(X, ξ) = (1− n)η(X),

(13) (Lξg)(X, Y ) = −2{g(X, Y )− η(X)η(Y )},
where S is the Ricci tensor, R is the Riemannian curvature tensor field and ∇ is the
Levi-Civita connection associated to g.

3. Ricci and η-Ricci Solitons on (M,ϕ, ξ, η, g)

Let (M,ϕ, ξ, η, g) be a paracontact metric manifold. Consider the equation

(14) Lξg + 2S + λg + 2µη ⊗ η = 0,

where Lξ is the Lie derivative operator along the vector field ξ, S is the Ricci curvature
tensor field of the metric g, and λ and µ are real constants. Writing Lξg in terms of
the Levi-Civita connection ∇, we get

(15) 2S(X, Y ) = −g(∇Xξ, Y )− g(X,∇Y ξ)− 2λg(X, Y )− 2µη(X)η(Y ),

for all X, Y ∈ χ(M), or equivalently:

(16) S(X, Y ) = −(λ+ 1)g(X, Y )− (µ− 1)η(X)η(Y ),

for all X, Y ∈ χ(M).
The data (g, ξ, λ, µ) which satisfy the equation (14) is said to be an η-Ricci soliton

on M [5]; in particular, if µ = 0, (g, ξ, λ) is a Ricci soliton [16] and it is called shrinking,
steady, or expanding according as λ is negative, zero or positive, respectively [19].
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Taking Y = ξ in (16), we get

(17) S(X, ξ) = −(λ+ µ)η(X).

Comparing (12) and (17), we have

(18) λ+ µ = n− 1.

In this case, the Ricci operator Q defined by g(QX, Y ) = S(X, Y ) has the expression:

(19) QX = −(λ+ 1)X − (µ− 1)η(X)ξ.

The above equation yields that

(20) r = −n(λ+ 1)− (µ− 1).

4. η-Ricci solitons on para-Kenmotsu manifolds with Ricci tensor of
Coddazi type

Taking covariant differentiation of (16) with respect to Z we get

(21) (∇ZS)(X, Y ) = −(µ− 1)[(∇Zη)(X)η(Y ) + (∇Zη)(Y )η(X)].

Using (8) in (21) we get

(22) (∇ZS)(X, Y ) = −(µ− 1)[g(Z,X)η(Y ) + g(Z, Y )η(X)− 2η(X)η(Y )η(Z)].

In view of (22) it follows that

(∇ZS)(X, Y )− (∇Y S)(Z,X) = −(µ− 1)[g(X,Z)η(Y ) + g(Y, Z)η(X)

− g(Z, Y )η(X)− g(X, Y )η(Z)].(23)

Since, by hypothesis, the Ricci tensor is of Codazzi type, from (23) we get

(24) (µ− 1)[g(X,Z)η(Y ) + g(Y, Z)η(X)− g(Z, Y )η(X)− g(X, Y )η(Z)] = 0.

.
Putting Z=ξ in (24), we get

(25) (µ− 1)[η(X)η(Y )− g(X, Y )] = 0,

which yields

(µ− 1)g(ϕX,ϕY ) = 0.

From the above it follows that µ = 1. Using (18) we get λ = n− 2. Also from (16)
we have

S(X, Y ) = −(n− 1)g(X, Y ).

Thus we can state the following:

Theorem 4.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M(ϕ, ξ, η, g)
admits an η-Ricci soliton whose Ricci tensor is of Coddazi type, then λ = n−2, µ = 1
and the manifold is Einstein.
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5. η-Ricci Solitons on Para-Kenmotsu manifolds with cyclic parallel
Ricci tensor

This section is devoted to study proper η-Ricci solitons on para-Kenmotsu mani-
folds with cyclic parallel Ricci tensor. Therefore

(26) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0,

for all smooth vector fields X, Y, Z ∈ χ(M).

Using (3) and (22) in (26) we get

(27) (µ− 1)[g(ϕX,ϕZ)η(Y ) + g(ϕY, ϕZ)η(X) + g(ϕX,ϕY )η(Z)] = 0.

Putting X = ξ in (27), we get

(28) (µ− 1)[g(ϕY, ϕZ)] = 0.

It follows that

(29) µ = 1.

Using (18) and above equation we get λ = n− 2. Also from (16) we have

S(X, Y ) = −(n− 1)g(X, Y ).

Thus we are in a position to state the following:

Theorem 5.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M(ϕ, ξ, η, g)
with cyclic parallel Ricci tensor admits η-Ricci soliton, then λ = n− 2, µ = 1 and the
manifold is Einstein.

6. η-Ricci Solitons on ϕ-Ricci Symmetric Para-Kenmotsu manifolds

A para-Kenmotsu manifold is said to be ϕ-Ricci symmetric if

(30) ϕ2(∇XQ)Y = 0,

holds for all smooth vector field X, Y . It should be mentioned that ϕ-Ricci symmetric
Sasakian manifolds have been studied in [8].

Taking covariant derivative of (16), we get

(∇XQ)Y = ∇XQY −Q(∇XY )

= −(µ− 1)[g(X, Y )ξ − 2η(X)η(Y )ξ + η(Y )X].(31)

Operating ϕ2 on both sides of (31), we get

(32) ϕ2(∇XQ)Y = −(µ− 1)η(Y )ϕ2X.

From (30) and (32) we have

(33) µ = 1.
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Also from (18) and (33) we get λ = n− 2 and from (16) we have

S(X, Y ) = −(n− 1)g(X, Y ).

Thus we are in position to state the following:

Theorem 6.1. If a (2n+ 1)-dimensional ϕ-Ricci symmetric para-Kenmotsu man-
ifold M(ϕ, ξ, η, g) admits η-Ricci soliton, then λ = n − 2, µ = 1 and the manifold is
Einstein.

7. η-Ricci Solitons on ϕ-conformally semi-symmetric Para-Kenmotsu
manifolds

The conformal curvature tensor C is defined by

C(X, Y )Z = R(X, Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ],(34)

where S is the Ricci tensor, Q is the Ricci operator defined by S(X, Y ) = g(QX, Y ),
and r is the scalar curvature of the manifold M .

This section is devoted to the study of ϕ-conformally semi-symmetric η-Ricci soli-
tons on para-Kenmotsu manifolds. Then

(35) C.ϕ = 0,

from which it follows that

(36) C(X, Y )ϕZ − ϕ(C(X, Y )Z) = 0.

Putting Z = ξ in (36), we get

(37) ϕ(C(X, Y )ξ) = 0.

Putting Z = ξ in (34) and using (5), (9), (17) and (19) we get

C(X, Y )ξ = η(X)Y − η(Y )X − 1

n− 2
[S(Y, ξ)X − S(X, ξ)Y

+ η(Y )QX − η(X)QY ]

+
r

(n− 1)(n− 2)
[η(Y )X − η(X)Y ]

=

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
(η(X)Y − η(Y )X).(38)
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In view of (37) and (38) we have

(39) ϕ(C(X, Y )ξ) =

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
[η(X)Y − η(Y )X] = 0.

Replacing X by ϕX in (39) we get

(40)

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
η(Y )ϕ2X = 0.

From (40) it follows that[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
= 0.

By virtue of (20), we get

λ− µ = 2n2 − 3n+ 1.

From (18), we get
λ = n(n− 1),

and
µ = −(n− 1)2.

Thus we can state the following:

Theorem 7.1. If a ϕ-conformally semisymmetric (2n+1)-dimensional para-Kenmotsu
manifold with constant scalar curvature admits η-Ricci solitons, then λ = n(n − 1)
and µ = −(n− 1)2.

8. η-Ricci solitons on conformally Ricci semi-symmetric Para-Kenmotsu
manifolds

In this section we study η-Ricci solitons on conformally Ricci semi-symmetric para-
Kenmotsu manifolds, that is

(41) C.S = 0,

which implies

(42) (C(X, Y )Z.S)(Z,W ) = 0.

From (41) we get

(43) S(C(X, Y )Z,W ) + S(Z,C(X, Y )W ) = 0.

Using (16) in (43) we get

(44) (µ− 1)[η(C(X, Y )Z)η(W ) + η(C(X, Y )W )η(Z)] = 0.

Putting X = Y = ξ in (44) we get

(45) (µ− 1)[η(C(ξ, Y )Z) + η(C(ξ, Y )ξ)η(Z)] = 0.
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With the help of (38) we find

η(C(ξ, Y )Z) = g(C(ξ, Y )Z, ξ)

= −g(C(ξ, Y )ξ, Z)

= −

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
[g(Y, Z)− η(Y )η(Z)] = 0.(46)

Also from (46) we have

(47) η(C(ξ, Y )ξ) = 0.

Using (46) and (47) in (45) we get

(48) (µ− 1)

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
[g(Y, Z)− η(Y )η(Z)] = 0.

From (48) we obtain

(49) (µ− 1)

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
g(ϕY, ϕZ) = 0.

Therefore, we get

(50) (µ− 1)

[
1 +

n+ λ

n− 2
− r

(n− 1)(n− 2)

]
= 0.

By virtue of (20), we get

(51) (µ− 1)(λ− µ− 2n2 + 3n− 1) = 0.

Hence we can state the following:

Theorem 8.1. If a (2n + 1)-dimensional para-Kenmotsu manifold M(ϕ, ξ, η, g)
admits η-Ricci soliton and C.S = 0, then

(µ− 1)(λ− µ− 2n2 + 3n− 1) = 0.

9. Example of η-Ricci solitons on three-dimensional para-Kenmotsu man-
ifold

We consider the three-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0}, where
(x, y, z) are the standard coordinates in R3. The vector fields

e1 =
∂

∂x
, e2 =

∂

∂y
, e3 = x

∂

∂x
+ y

∂

∂y
+

∂

∂z
,

are linearly independent at each point of M and

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.
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Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e3, e3) = 1, g(e2, e2) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M) and ϕ be the
(1,1) tensor field defined by ϕ(e1) = e2, ϕ(e2) = e1, ϕ(e3) = 0. Then using the linearity
of ϕ and g we have

η(e3) = 1, ϕ2(Z) = Z − η(Z)e3,

g(ϕZ, ϕW ) = −g(Z,W ) + η(Z)η(W ),

for any Z,W ∈ χ(M). Thus for e3 = ξ, (ϕ, ξ, η, g) defines an almost contact metric
structure on M.

The Riemannian connection ∇ of the metric tensor g is given by Koszul’s formula
which is

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]).

Using Koszul’s formula we get the following

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,
∇e2e3 = e2, ∇e2e2 = e3, ∇e2e1 = 0,
∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From above we see that the manifold satisfies ∇Xξ = X − η(X)ξ, for e3 = ξ.
Therefore the structure M(ϕ, ξ, η, g) is a three-dimensional para-Kenmotsu manifold.

With the help of the above results it can be verified that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,
R(e1, e2)e2 = e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,
R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = e3.

Using the expressions of the curvature tensor we find the values of the Ricci tensor
as follows

S(e1, e1) = −2, S(e2, e2) = 2, S(e3, e3) = −2,

S(e1, e2) = 0, S(e1, e3) = 0, S(e2, e3) = 0.

From (16) we obtain S(e1, e1) = −(λ + 1) and S(e3, e3) = −(λ + µ), therefore λ = 1
and µ = 1. Hence the Theorem 4.1, Theorem 5.1 and Theorem 6.1 are verified.
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[15] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y ).R = 0. I. The local

version, J. Differential Geom. 17 (4) (1982), 531–582.
[16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801.4222, 2008.
[17] L. Verstraelen, Comments on pseudo-symmetry in the sense of Ryszard Deszcz, in: Geometry

and topology of submanifolds, VI, World Sci. River Edge, N. J., (1994), 199–209.
[18] S. Zamkovoy, On Para-Kenmotsu manifolds, Filomat 32 (14) (2018), 4971–4980.
[19] G. Zhen, Conformal symmetric K-contact manifolds, Chinese Quart. J. Math. 7 (1992), 5–10.

Ashis Mondal
Department of Mathematics, Jangipur College, Murshidabad
West Bengal 742213, India
E-mail : ashism750@gmail.com


