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Abstract. This paper examines the behavior of a 3-dimensional trans-Sasakian manifold

equipped with a gradient generalized quasi-Yamabe soliton. In particular, It is shown

that α-Sasakian, β-Kenmotsu and cosymplectic manifolds satisfy the gradient generalized

quasi-Yamabe soliton equation. Furthermore, in the particular case when the potential

vector field ζ of the quasi-Yamabe soliton is of gradient type ζ = grad(ψ), we derive a Pois-

son’s equation from the quasi-Yamabe soliton equation. Also, we study harmonic aspects

of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds sharing a harmonic

potential function ψ. Finally, we observe that 3-dimensional compact trans-Sasakian mani-

fold admits the gradient generalized almost quasi-Yamabe soliton with Hodge-de Rham po-

tential ψ. This research ends with few examples of quasi-Yamabe solitons on 3-dimensional

trans-Sasakian manifolds.

1. Introduction

In the past twenty years, geometric flows have emerged as versatile tools for de-
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scribing geometric structures in Riemannian geometry. A specific class of solutions
on which the metric evolves by dilation and diffeomorphisms plays a vital part in
the study of singularities of the flows as they appear as possible singularity models.
They are often called soliton solutions.

The theory of Yamabe flow was popularized by Hamilton in his prime research
work [12] as a tool for constructing metrics of constant scalar curvature on an n-
dimensional Riemannian manifold (Mn, g), n ≥ 3. The Yamabe flow is an evolution
equation for metrics on Riemannian manifolds. It is given by

∂

∂t
g(t) = −rg(t), g(0) = g0,(1.1)

where r is the scalar curvature corresponding to Riemannian metric g and t is time.
It is used to deform a metric by smoothing out its singularities.

A Yamabe soliton is a special solution of the Yamabe flow that moves by one
parameter a family of diffeomorphisms generated by a fixed vector field E on Mn

with a real constant λ satisfying the following equation

1

2
LEg = (r − λ)g.(1.2)

Here LEg is the Lie derivative of the metric g along the vector field E, called the
soliton vector field of the Yamabe soliton [12]. If λ < 0, λ > 0, or λ = 0, then the
(Mn, g) is called a Yamabe shrinker, Yamabe expander, or Yamabe steady soliton,
respectively.

When the vector field E is the gradient of a smooth function ψ : Mn −→ R,
the manifold will be called a gradient Yamabe soliton. The function ψ is called
the potential function of the gradient Yamabe soliton. In this case equation (1.2)
becomes

Hessψ = (r − λ)g,(1.3)

where Hessψ stands for the Hessian of the potential function ψ. The gradient
Yamabe soliton equation (1.3) links geometric information about the curvature of
the manifold to the scalar curvature tensor and the geometry of the level sets of the
potential function by means of their second fundamental form. This makes gradient
Yamabe solitons under some curvature conditions an interesting topic of study.

An Einstein manifold [2] with a constant potential function is called a trivial
gradient Ricci soliton. Gradient Yamabe solitons [14] play an important role in
Yamabe flow as they correspond to self-similar solutions, and often arise as singu-
larity models [18].

Introduced by Chen and Desahmukh in [4], a Riemannian manifold (Mn, g) is
called a quasi-Yamabe solitonif it admits a vector field E such that

(1.4) LEg + 2(λ− r)g = 2µE] ⊗ E],

for some real constant λ and smooth function µ, where E] is the dual 1-form of
E. The vector field E is also called a soliton vector field for the quasi-Yamabe
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soliton. We denote the quasi-Yamabe soliton satisfying (1.4) by (Mn, g, E, λ, µ). If
E = ∇ψ, then (1.4) becomes

(1.5) ∇2ψ = (r − λ)g + µdψ ⊗ dψ,

which is the gradient generalized quasi-Yamabe soliton studied by Huang et al. [10]
and Leandro et al. [13], where ∇2ψ denotes Hessian of ψ. This class of closely
related Yamabe solitons hase be extensively studied; for further details see ([1], [5],
[8], [19], [20], [22], [23], [25]).

According to Pigola et al. [17], if we replace the constant λ in (1.4) and (1.5)
with a smooth function λ ∈ C∞(M), called soliton function, then we can say that
(Mn, g) is an almost quasi-Yamabe and gradient generalized almost quasi-Yamabe
soliton, respectively.

On one hand, in 1985, Oubina [15] introduced a new class of almost contact met-
ric manifolds, known as trans-Sasakian manifolds. This class consists the Sasakian,
the Kenmotsu and the cosymplectic structures. The properties of trans-Sasakian
manifolds have been studied by several authors, like Blair [3] and Marrero [14].
The main goal of this paper is to characterize the three-dimensional trans-Sasakian
manifolds equipped with gradient generalized quasi-Yamabe solitons, quasi-Yamabe
metrics, and gradient generalized almost quasi-Yamabe metrics.

2. Preliminaries

Let M be a connected almost contact metric manifold equipped with almost
contact metric structure (ϕ, ζ, η, g) consisting of a (1, 1) tensor field ϕ, a vector field
ζ, a 1-form η and a positive definite metric g such that

(1.1) ϕ2 = −I + η ⊗ ζ, η(ζ) = 1, η ◦ ϕ = 0, ϕζ = 0,

(1.2) g(ϕE, φF ) = g(E,F )− η(E)η(F ), η(E) = g(E, ζ)

for all E,F ∈ χ(M), where χ(M) denotes the collection of all smooth vector fields
of M and dimM = 2m+ 1.

In the Grey and Harvella [9] classification of almost Hermitian manifolds, there
appears a class W4 of Hermitian manifolds which are closely related to the conformal
Kaehler manifolds. In their classification, the class C6 ⊕ C5 (see [3], [6], [15], [16])
coincides with the class of trans-Sasakian structure of type (α, β). In fact, the
local nature of two sub classes, namely C6 and C5 of trans-Sasakian structures are
characterized completely. An almost contact metric structure (φ, ξ, η, g) on M is
called a trans-Sasakian [21] if (M ×R, J,G) belongs to the class W4, where J is an
almost complex structure on M ×R defined by

J

(
E, f

d

dt

)
=

(
ϕE − fζ, η(E)

d

dt

)
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for all vector fields X on M and smooth functions f on M × R. Here G is the
product metric on M × R and R denotes the set of real numbers. This may be
expressed by the condition

(1.3) (∇Eϕ)F = α(g(E,F )ζ − η(F )E) + β(g(ϕE,F )ξ − η(F )ϕE)

where α and β are some scalars functions on M and ∇ denotes the Levi-Civita
connection with respect to g. We note that the trans-Sasakian structures of type
(0, 0), (α, 0) and (0, β) are the cosymplectic, α-Sasakian and β-Kenmotsu structures,
respectively. In particular, if α = 1, β = 0, α = 0, β = 1 and α = 0, β = 0,
then the trans-Sasakian manifold reduces to Sasakian, Kenmotsu and cosymplectic
manifolds, respectively. From (1.3), it follows that

(1.4) ∇Eζ = −αϕE + β[E − η(E)ζ],

equivalent to

(1.5) (∇Eη)F = −αg(ϕE,F ) + β[g(E,F )− η(E)η(F )],∀ E, F ∈ χ(M).

In a 3-dimensional trans-Sasakian manifold M , we have the following relations [7]

(1.6) R(E,F )ζ = (α2 − β2)[η(F )E − η(E)F ] + 2αβ[η(F )ϕE − η(E)ϕF ]

+ [(Eα)ϕE − (Xα)ϕF + (Fβ)ϕ2E − (Eβ)ϕ2F ],

(1.7) S(E, ζ) = [(2(α2 − β2)− (ζβ)]η(E) + ((ϕE)α) + (Eβ),

(1.8) Qζ = (2(α2 − β2)− (ζβ))ζ + ϕ(gradα)− (gradβ),

where R, S and Q denote the curvature tensor, Ricci tensor and Ricci operator
of g, respectively. Also grad stands for gradient. Further, in a three-dimensional
trans-Sasakian manifold we have

(1.9) ϕ(gradα) = gradβ,

and

(1.10) 2αβ + (ζα) = 0.

Using (1.9) and (1.10), for constants α and β, we have

(1.11) R(ζ, E)F = (α2 − β2)[g(E,F )ζ − η(F )E],

(1.12) R(E,F )ζ = (α2 − β2)[η(F )E − η(E)F ],

(1.13) S(E, ζ) = [2(α2 − β2)]η(E).
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3. Gradient Generalized Quasi-Yamabe Soliton on Three-dimensional
Trans-Sasakian Manifolds

For a smooth function ψ on M , the gradient and Hessian of ψ are, respectively,
defined by
(1.1)
g(gradψ,E) = E(ψ) and (Hessψ)(E,F ) = g(∇Egradψ, F ), ∀ E,F ∈ Γ(TM).

For E ∈ Γ(TM), we define E] ∈ Γ(T̄M) by

(1.2) E](F ) = g(E,F ).

The generalized quasi-Yamabe soliton equation [4] in a Riemannian manifold M is
defined by

(1.3)
1

2
LEg = µE] � E] + (r − λ)g.

Equation (1.3) is a generalization of Einstein manifold [10]. Note that if E = gradψ,
where ψ ∈ C∞(M), the gradient generalized quasi-Yamabe soliton equation is given
by [10]:

(1.4) Hessψ = µdψ � dψ + (r − λ)g.

Main Result:

Theorem 3.1. Let M be a three-dimensional trans-Sasakian manifold satisfy the
gradient generalized quasi-Yamabe soliton equation (1.4) with condition µ[λ+6(α2−
β2)] = 0, then ψ is a constant function. Furthermore, if µ 6= 0, then λ = −6(α2−β2)
is negative, that is, a three-dimensional trans-Sasakian manifold admits a shrinking
gradient generalized quasi-Yamabe soliton.

From Theorem 3.1, we get the following remarks:

Remark. Let a three-dimensional trans-Sasakian manifold M satisfy the gradient
generalized quasi-Yamabe soliton equation Hessψ = (r − λ)g, then ψ is constant
and M is η-Einstein.

Remark. In a three-dimensional trans-Sasakian manifold M , there is no non-
constant smooth function ψ such that Hessψ = λg for some constant λ.

To prove the Theorem 3.1, we have to demonstrate the following lemmas.

Lemma 3.2. Let M be a three-dimensional trans-Sasakian manifold. Then we
have
(1.5)
(Lζ(LEg))(F, ζ) = (α2 − β2){g(E,F )− η(E)η(F )}+ g(∇ζ∇ζE,F ) + Fg(∇ζE, ξ),

where E,F ∈ Γ(TM).

Proof. From the property of Lie-derivative we note that

(Lζ(LEg))(E, ζ) = ζ((LEg)(F, ζ))− (LEg)(LζF, ζ)− (LEg)(F,Lζζ).
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Since LζF = [ζ, F ] and Lζζ = [ζ, ζ], therefore the above equation can be written as

(Lζ(LEg))(F, ζ) = ζg(∇FE, ζ) + ζg(∇ζE,F )− g(∇[ζ,F ]E, ζ)− g(∇ζE, [ζ, F ])

= g(∇ζ∇FE, ζ) + g(∇FE,∇ζζ) + g(∇ζ∇ζE,F )

+g(∇ζE,∇ζF )− g(∇ζE,∇ζF )− g(∇[ζ,F ]E, ζ) + g(∇ζE,∇F ζ).

From (1.4) we get ∇ζζ = 0, so the last equation gives

(Lζ(LEg))(F, ζ) = g(∇ζ∇FE, ζ) + g(∇ζ∇ζE,F )− g(∇[ζ,F ]E, ζ)

+Fg(∇ζE, ζ)− g(∇F∇ζE, ζ),

which gives

(1.6) (Lζ(LEg))(F, ζ) = g(R(ζ, F )E, ζ) + g(∇ζ∇ζE,F ) + Y g(∇ζE, ζ).

From (1.12), we lead

g(R(ζ, F )E, ζ) = g(R(F, ζ)ζ, E) = (α2 − β2){g(E,F )− η(E)η(F )}.

The Lemma 3.2 follows from the last two equations. Particularly, if Y is orthogonal
to ζ then equation (1.5) assumes the form

(Lζ(LEg))(E, ζ) = (α2 − β2)g(E,F ) + g(∇ζ∇ζE,F ) + Fg(∇ζE, ζ)

for all E ∈ χ(M) and F orthogonal to ζ. 2

Lemma 3.3. Let M be a Riemannian manifold, and let ψ ∈ C∞(M). Then we
have

(1.7) (Lζ(dψ � dψ))(F, ζ) = F (ζ(ψ))ζ(ψ) + F (ψ)ζ(ζ(ψ)).

Proof. We calculate:

(Lζ(dψ � dψ))(F, ζ) = ζ(F (ψ)ζ(ψ))− [ζ, F ](ψ)ζ(ψ)− F (ψ)[ζ, ζ](ψ)

= ζ(F (ψ))ζ(ψ) + F (ψ)ζ(ζ(ψ))− [ζ, F ](ψ)ζ(ψ).

Since [ζ, F ](ψ) = ζ(F (ψ))− F (ζ(ψ)), therefore the above equation becomes

(Lζ(dψ � dψ))(F, ζ) = [ζ, F ](ψ)ζ(ψ) + F (ζ(ψ))ζ(ψ) + F (ψ)ζ(ζ(ψ))− [ζ, F ](ψ)ζ(ψ)

= F (ζ(ψ))ζ(ψ) + F (ψ)ζ(ζ(ψ)).

Hence the statement of Lemma 3.3 is proved. 2
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Lemma 3.4. Let a three-dimensional trans-Sasakian manifold M satisfy the gra-
dient generalized quasi-Yamabe soliton equation (1.4). Then we have

(1.8) ∇ζ gradψ = −[λ− 6(α2 − β2)]ζ + µ ζ(ψ)gradψ.

Proof. Let F ∈ Γ(TM), then form the definition of Ricci tensor S, scalar curvature
r and the curvature condition (1.12), we have

S(E,F ) =

3∑
i=1

g(R(ζ, ei)ei, F ) =

3∑
i=1

g(R(ei, F )ζ, ei) = 2(α2 − β2),

r = 6(α2 − β2),

where {e1, e2, e3} is an orthonormal frame on M . From the above equations, we
infer

(1.9) λg(ζ, F ) + rg(ζ, F ) = [λ+ 6(α2 − β2)]g(ζ, F ).

From (1.4) and (1.9), we obtain

(1.10) (Hessψ)(ζ, F ) = µ ζ(ψ)F (ψ) + [6(α2 − β2)− λ]g(ζ, F )

= µ ζ(ψ)g(gradψ, F ) + [6(α2 − β2)− λ]g(ζ, F ).

The Lemma 3.3 follows from equation (1.10) and the definition of Hessian (see
(1.1)). 2

Now, we are going to prove our main Theorem 3.1 by using Lemma 3.2, Lemma
3.3 and Lemma 3.4.

Proof of Theorem 3.1. Let us suppose that the three-dimensional trans-Sasakian
manifold satisfying the gradient generalized quasi-Yamabe soliton equation (1.4)
and λ, µ ∈ R. Let Y ∈ Γ(TM), then Lemma together with E = grad ψ leads to

2(Lζ(Hessψ))(F, ζ) = (α2 − β2){F (ψ)− ζ(ψ)η(F )}
+g(∇ζ∇ζ gradψ, F ) + Fg(∇ζ gradψ, ζ).(1.11)

From Lemma 3.4 and equations (1.1), (1.2), (1.4), (1.11), we get

2(Lζ(Hessψ))(F, ζ) = F (ψ)[(α2 − β2) + µ(ζ(ζ(ψ))) + (µ(ζ(ψ)))2]

+{µζ(ψ)[6(α2 − β2)− λ]− ζ(ψ)(α2 − β2)}η(F )

+F [6(α2 − β2)− λ+ µ(ζ(ψ))2]

for all F ∈ Γ(TM). Taking F orthogonal to ζ and therefore the above equation
becomes

2(Lζ(Hessψ))(F, ζ) = F [6(α2 − β2)− λ+ µ(ζ(ψ))2]

+F (ψ)[(α2 − β2) + µ(ζ(ζ(ψ))) + (µ(ζ(ψ)))2].(1.12)
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Next, the Lie derivative of the gradient generalized quasi-Yamabe soliton equation
(1.4) along the vector field ζ yields

(1.13) 2(Lζ(Hessψ))(F, ζ) = µ(Lζ(dψ � dψ))(F, ζ).

The last two equations together with Lemma infer

(1.14) F (ψ)− µζ(ζ(ψ))F (ψ) + µ2ζ(ψ)2F (ψ)− 2µζ(ψ)F (ζ(ψ))

= −2µF (ζ(ψ))ζ(ψ)− 2µF (ψ)ζ(ζ(ψ)),

which is equivalent to

(1.15) F (ψ)[1 + µζ(ζ(ψ)) + µ2ζ(ψ)2] = 0.

According to Lemma 4.3, we have

(1.16) µζ(ζ(ψ)) = µζg(ζ, grad ψ)

= ag(ζ,∇ζ gradψ)

= µ[λ+ 6(α2 − β2)]− µ2ζ(ψ)2,

by equations (1.15) and (1.16), we obtain

(1.17) F (ψ)[λ+ 6(α2 − β2)] = 0,

since [λ+ 6(α2−β2)] 6= 0, we find that F (ψ) = 0, i.e., gradψ is parallel to ζ. Hence
grad ψ = 0 as D = kerη is not integrable any where, which means ψ is a constant
function. 2

Now, for particular values of α and β we turn up the following cases:
Case: For α = 0, (β = 1) and (α = β = 0) we can state the following results:

Corollary 3.5. Let M be a 3-dimensional β-Kenmotsu (or Kenmotsu) manifold
satisfies the gradient generalized quasi-Yamabe soliton(1.4) condition µ[λ− 6β2)] 6=
0, then ψ is a constant function. Furthermore, if µ 6= 0, implies λ = 6β2), then M
is expanding.
Case: For β = 0, or (α = 1) we can state:

Corollary 3.6. Let M be a 3-dimensional α-Sasakian (or Sasakian) manifold
satisfies the gradient generalized quasi-Yamabe soliton(1.4) condition µ[λ+ 6α2)] 6=
0, then ψ is a constant function. Furthermore, if µ 6= 0, implies λ = −6α2), then
M is shrinking.
Case: For α = β = 0, we can state:

Corollary 3.7. Let M be a 3-dimensional cosymplectic manifold satisfies the gradi-
ent generalized quasi-Yamabe soliton (1.4) condition µ[λ] 6= 0, then ψ is a constant
function. Furthermore, if µ 6= 0, implies λ = 0, then M is steady.
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4. Quasi-Yamabe Soliton on 3-dimensional Trans-Sasakian Manifolds

Again, assume the equation

(4.1) Lζg + (λ−R)g + µE] ⊗ E] = 0

where g is a Riemannian metric and R is the scalar curvature, ζ is vector field, E]

is a 1-form and λ and µ are real constant. The data (g, ζ, λ, µ) satisfies the equation
(4.1) is called the quasi-Yamabe soliton. In particular, if µ = 0, (g, ζ, λ) is a Yamabe
soliton.

Using the definition of Lie derivative and (4.1), we obtain

(4.2) (R− λ)g(F,G) = −µE](F )E](G)− 1

2
[g(∇F ζ,G) + g(F,∇Gζ)],

for any F,G ∈ χ(M).
Contracting (4.2) we get

(4.3) 3λ− µ = 3R− div(ζ).

Let (M, g, ϕ, η, ζ) be a 3-dimensional trans-Sasakian manifold and (g, ζ, λ, µ) be
a quasi-Yamabe soliton on M . Writing (4.2) for F = G = ζ, we obtain

(4.4) λ− µ = 6(α2 − β2).

Therefore

(4.5)

{
λ = −6(α2 − β2) + div(ζ)

2

µ = −12(α2 − β2) + div(ζ)
2

Using (4.5) we can state the following results.

Theorem 4.1. Let (M,η, ϕ, ζ, g) be a 3-dimensional trans-Sasakian manifold and
E] be the g-dual 1-form of the gradient vector field ζ = grad(ψ). If (4.1) define a
quasi-Yamabe soliton with non vanishing µ in M , then the Poisson equation satisfied
by ψ becomes

(4.6) ∆(ψ) = 2[µ+ 12(α2 − β2)].

Once again, considering the equation (4.5) we can also obtain

(4.7) ∆(ψ) = 2[λ+ 6(α2 − β2)].

Remark.([24]) A C∞ function f : M −→ R is said to be harmonic if ∆f = 0 ,
where ∆ is the Laplacian operator in M .
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Now, from equation (4.7) and using above remark, we obtain the following
results:

Theorem 4.2. Let (M,η, ϕ, ζ, g) be a 3-dimensional trans-Sasakian manifold and
E] be the g-dual 1-form of the gradient potential vector field ζ = grad(ψ) . If the
potential function ψ is harmonic, then quasi-Yamabe soliton is shrinking for the
value of λ = −3(α2 − β2).

Corollary 4.3. Let (M,η, ϕ, ζ, g) be a 3-dimensional α-Sasakian (or Sasakian)
manifold and E] be the g-dual 1-form of the gradient potential vector field ζ =
grad(ψ) . If the potential function ψ is harmonic, then quasi-Yamabe soliton is
shrinking for the value of λ = −3α2.

Corollary 4.4. Let (M,η, ϕ, ζ, g) be a 3-dimensional β-Kenmotsu (or Kenmotsu)
manifold and E] be the g-dual 1-form of the gradient potential vector field ζ =
grad(ψ) . If the potential function ψ is harmonic, then quasi-Yamabe soliton is
expanding for the value of λ = 3β2.

Corollary 4.5. Let (M,η, ϕ, ζ, g) be a 3-dimensional cosymplectic manifold and
E] be the g-dual 1-form of the gradient potential vector field ζ = grad(ψ) . If the
potential function ψ is harmonic, then quasi-Yamabe soliton is steady for the value
of λ = 0.

5. Example of a Trans-Sasakian Manifold of Type (α, 0) 3-metric as Quasi
Yamabe Soliton

Example 5.1. Let M =
{

(x, y, z) ∈ R3 : z 6= 0
}

, where (x, y, z) is the standard
coordinates of R3.

The vector fields are

e1 =
∂

∂z
− y ∂

∂x
, e2 =

∂

∂y
, e3 = 2

∂

∂x

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0

that is, the form of the metric becomes Let η be the 1-form defiend by η(Z) =
g(Z, e3) for any Z ∈ χ(M).

Also, let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0.

Thus, using the linearity of ϕ and g, we have

η(e3) = 0, , η(e1) = 0, η(e2) = 0,

[e1, e2] =
1

2
e3, [e2, e3] = 0, [e1, e3] = 0,
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ϕ2Z = −Z + η(Z)e3

,

g(ϕZ,ϕW ) = g(Z,W )− η(Z)η(W )

for any Z,W ∈ χ(M).
Then for e3 = ξ, the structure (ϕ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY,Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])

−g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula.
Using Koszul’s formula we have

∇e1e1 = 0, ∇e1e2 = −1

4
e3, ∇e1e3 =

1

4
e3,

∇e2e1 =
1

4
e3, ∇e2e2 = 0, ∇e2e3 = −1

4
e1,

∇e3e1 =
1

4
e2, ∇e3e2 = −1

4
e1, ∇e3e0 = 0.(5.1)

From (5.1) we find that the structure (ϕ, ξ, η, g) satisfies the formula (4.5) for α = 1
4

and ξ = e3. Hence the manifold is a 3-dimensional trans-Sasakian manifold of type
(α, 0) with the constant structure function α = 1

4 and β = 0.
Then the Riemannian and Ricci curvature tensor fields are given by:

R(e1, e2)e3 = 0, R(e2, e3)e3 =
1

16
e2, R(e1, e3)e3 =

1

16
e1,

R(e1, e2)e2 = − 3

16
e1, R(e2, e3)e2 = − 1

16
e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 =
3

16
e2, R(e2, e3)e1 = 0, R(e1, e3)e = − 1

16
e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1) = −1

8

similarly we have

S(e1, e1) = S(e2, e2) = −1

8
, andS(e3, e3) =

1

8
.
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Now, we have constant scalar curvature as follows,

R = S(e1, e1) + S(e2, e2) + S(e3, e3) = −1

8
.

By the definition of quasi-Yamabe soliton and using (1.4), we obtain

2β[g(ei, ei) + η(ei)η(ei)] + 2(λ−R)g(ei, ei) + 2µX](ei)X
](ei) = 0

for all i ∈ {1, 2, 3}, and we have

2(1 + δi3) + 2(λ−R) + 2µδi3 = 0

for all i ∈ {1, 2, 3}.
Therefore λ = − 1

2 and µ = 3
8 the data (g, ξ, λ, µ) admitting the shrinking quasi-

Yamabe soliton on 3-dimensional trans-Sasakian manifolds with λ < 0.

6. Gradient Almost Quasi-Yamabe Soliton in a Compact Trans-Sasakian
Manifold

In [7] De and Sarkar proved that if a 3-dimensional trans-Sasakian manifold is
of constant curvature is compact and connected. .

On the other hand, The classical theorem of de-Rham-Hodge asserts that the
cohomology of an oriented closed Riemannian manifold can be represented by har-
monic forms. The similar one still holds for an oriented compact Riemannian man-
ifold with boundary by imposing certain boundary conditions, such as absolute and
relative ones.

We consider M as a compact orientable trans-Sasakian manifold and X ∈ χ(M).
Then Hodge-de Rham decomposition theorem [11] implies that E can be expressed
as

(5.1) E = ∇h+ F,

where h ∈ C∞(M) and div(F ) = 0. The function h is called the Hodge-de Rham
potential [11].

Theorem 6.1. If (g,E, λ, µ) is a compact gradient almost quasi-Yamabe soliton on
trans-Sasakian manifold M . If M is also a gradient almost quasi-Yamabe soliton
with potential function ψ, then up to a constant, f equals to the Hodge-de Rham
potential.

Proof. Since (g,E, λ, µ) is a compact almost quasi-Yamabe soliton, now taking the
trace of (1.4), we find

(5.2) div(E) = (R− λ)n+ trce(µE] ⊗ E]),

Hodge-de Rham decomposition implies that div(E) = ∆h, hence the above equa-
tion, we get

(5.3) R = λ− ∆h

n
+

1

3
trce(µE] ⊗ E]).
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Again since M is generalized gradient almost quasi-Yamabe soliton with Perelman
potential f , hence taking trace of (1.5), we have

(5.4) R = λ− ∆ψ

3
+

1

3
µ |E|2 .

Now, equating the equations (5.3) and (5.4), we find 1
3∆(ψ − h) = 0. Hence ψ − h

is a harmonic function in compact trans-Sasakian manifold. Hence f = h + c, for
some constant c. 2

7. Example of a Trans-Sasakian Manifold of Type (0, β) 3-metric as Quasi
Yamabe Soliton

Example. Let M =
{

(x, y, z) ∈ R3 : z 6= 0
}

where (x, y, z) are the standard coor-
dinates of R3. The vector fields are

e1 = z
∂

∂x
, e2 = z

∂

∂y
e3 = z

∂

∂z

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e1, e3) = g(e2, e3) = g(e1, e2) = 0

that is, the form of the metric becomes

g =
dx2 + dy2 + dz2

z2
.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M).
Also, let ϕ be the (1, 1) tensor field defined by

ϕ(e1) = −e2, ϕ(e2) = e1, ϕ(e3) = 0.

Thus, using the linearity of ϕ and g, we have

η(e3) = 0, , η(e1) = 0, η(e2) = 0,

[e1, e2] = 0, [e2, e3] = −e2, [e1, e3] = −e1,

ϕ2Z = −Z + η(Z)e3

,
g(ϕZ,ϕW ) = g(Z,W )− η(Z)η(W )

for any Z,W ∈ χ(M).
Then for e3 = ξ, the structure (ϕ, ξ, η, g) defines an almost contact metric

structure on M .
Let ∇ be the Levi-Civita connection with respect to the metric g, then we have

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y, Z])
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−g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula.
Using Koszul’s formula we have

∇e1e1 = e3, ∇e1e2 = 0, ∇e1e3 = −e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.(5.1)

From (5.1) we find that the manifold satisfies (1.4) for α = 0 and β = −1 and
ξ = e3. Hence the manifold is a 3-dimensional trans-Sasakian manifold of type
(0, β) with the constant structure function α = 0 and β = −1 [7] .

Then the Riemannian and Ricci curvature tensor fields are given by:

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e3, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = e2, R(e2, e3)e1 = 0, R(e1, e3)e = e3.

From the above expressions of the curvature tensor we obtain

S(e1, e1) = g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1) = −2

similarly, we have

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2.

Now, the scalar curvature

R = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6.

Because of scalar curvature r = 6, from Theorem (), we can conclude that M is an
Einstein manifold.

By the definition of quasi-Yamabe soliton and using (1.4), we obtain

2β[g(ei, ei) + η(ei)η(ei)] + 2(λ−R)g(ei, ei) + 2µX](ei)X
](ei) = 0

for all i ∈ {1, 2, 3}, and we have

−2(1 + δi3) + 2(λ−R) + 2µδi3 = 0

for all i ∈ {1, 2, 3}.
Therefore λ = −1 and µ = 3

8 the data (g, ξ, λ, µ) admitting the shrinking quasi-
Yamabe soliton on 3-dimensional trans-Sasakian manifolds with λ < 0.
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