• Title/Summary/Keyword: Weak Point Analysis

Search Result 291, Processing Time 0.022 seconds

ON BI-POINTWISE CONTROL OF A WAVE EQUATION AND ALGORITHM

  • Kim, Hong-Chul;Lee, Young-Il
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.739-763
    • /
    • 2000
  • We are concerned with mathematical analysis related to the bi-pointwise control for a mixed type of wave equation. In particular, we are interested in the systematic build-up of the bi-pointwise control actuators;one at the boundary and the other at the interior point simultaneously. The main purpose is to examine Hilbert Uniqueness Method for the setting of bi-pointwise control actuators and to establish relevant algorithm based on our analysis. After discussing the weak solution for the state equation, we investigate bi-pointwise control mechanism and relevant mathematical analysis based on HUM. We then proceed to set up an algorithm based on the conjugate gradient method to establish bi-pointwise control actuators to halt the system.

ON THE PROXIMAL POINT METHOD FOR AN INFINITE FAMILY OF EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Khatibzadeh, Hadi;Mohebbi, Vahid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.757-777
    • /
    • 2019
  • In this paper, we study the convergence analysis of the sequences generated by the proximal point method for an infinite family of pseudo-monotone equilibrium problems in Banach spaces. We first prove the weak convergence of the generated sequence to a common solution of the infinite family of equilibrium problems with summable errors. Then, we show the strong convergence of the generated sequence to a common equilibrium point by some various additional assumptions. We also consider two variants for which we establish the strong convergence without any additional assumption. For both of them, each iteration consists of a proximal step followed by a computationally inexpensive step which ensures the strong convergence of the generated sequence. Also, for this two variants we are able to characterize the strong limit of the sequence: for the first variant it is the solution lying closest to an arbitrarily selected point, and for the second one it is the solution of the problem which lies closest to the initial iterate. Finally, we give a concrete example where the main results can be applied.

Analysis of small signal stability using resonance condition (공진 조건을 이용한 미소신호 안정도 해석)

  • Cho, Sung-Jin;Jang, Gil-Soo;Yoon, Tae-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.109-111
    • /
    • 2001
  • Modern power grids are becoming more and more stressed with the load demands increasing continually. Therefore large stressed power systems exhibit complicated dynamic behavior when subjected to small disturbance. Especially, it is needed to analyze special conditions which make small signal stability structure varied according to operating conditions. This paper shows that the relation between small signal stability and operating conditions can be predicted well using node-focus point and 1:1 resonance point. Also, the weak point which limits operating range can be identified by the analysis of resonance condition. The proposed method is applied to test systems, and the results illustrate its capabilities.

  • PDF

Regional Analysis of Dew Possibility in Road Sign Using Meteorological Data (기상자료를 활용한 도로표지 결로의 지역별 발생가능성 분석)

  • Oh, Sei Chang;Kim, Jung Min;Choi, Kee Choo;An, Young Mi
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.195-202
    • /
    • 2013
  • PURPOSES : This study analyzed the regional dew possibility in road sign using meteorological data. METHODS : Four years of meteorological data such as temperature, humidity, dew point, wind velocity were collected and analyzed. As a result of literature review, dew was frequent in large diurnal range, high humidity and weak wind. So, dew possibility was analyzed by (temperature-dew point ${\leq}1^{\circ}C$ and wind velocity ${\leq}$ 1.5m/s). RESULTS : The possibility was analyzed for each meteorological observation point and the point of Suncheon and Bonghwa were selected as the most likely points of dew in road sign. The area of East Coast, Kyungbuk and Kyungnam were relatively low potential. CONCLUSIONS : Alternative with high effect of preventing dew should be selected in high possibility dew area despite of low economics.

Development of a Modified NDIF Method for Extracting Highly Accurate Eigenvalues of Arbitrarily Shaped Acoustic Cavities (임의 형상 음향 공동의 고정밀도 고유치 추출을 위한 개선된 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.742-747
    • /
    • 2012
  • A modified NDIF method using a sub-domain approach is introduced to extract highly accurate eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex cavities. It was revealed that the solution of the NDIF method is very inaccurate or is not suitable for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave domain into several convex domains. Finally, the validity of the proposed method is verified in two case studies, which indicate that eigenvalues obtained by the proposed method are more accurate compared to the exact method, the NDIF method, or FEM(ANSYS).

VARIATIONAL ANALYSIS OF AN ELECTRO-VISCOELASTIC CONTACT PROBLEM WITH FRICTION AND ADHESION

  • CHOUGUI, NADHIR;DRABLA, SALAH;HEMICI, NACERDINNE
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.161-185
    • /
    • 2016
  • We consider a mathematical model which describes the quasistatic frictional contact between a piezoelectric body and an electrically conductive obstacle, the so-called foundation. A nonlinear electro-viscoelastic constitutive law is used to model the piezoelectric material. Contact is described with Signorini's conditions and a version of Coulomb's law of dry friction in which the adhesion of contact surfaces is taken into account. The evolution of the bonding field is described by a first order differential equation. We derive a variational formulation for the model, in the form of a system for the displacements, the electric potential and the adhesion. Under a smallness assumption which involves only the electrical data of the problem, we prove the existence of a unique weak solution of the model. The proof is based on arguments of time-dependent quasi-variational inequalities, differential equations and Banach's fixed point theorem.

Development of the NDIF Method Using a Sub-domain Approach for Extracting Highly Accurate Natural Frequencies of Arbitrarily Shaped Plates (임의 형상 평판의 고정밀도 고유진동수 추출을 위한 분할영역법 기반 NDIF법 개발)

  • Kang, S.W.;Yon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.830-836
    • /
    • 2012
  • The NDIF method based on a sub-domain technique is introduced to extract highly accurate natural frequencies of arbitrarily shaped plates with the simply-supported boundary condition. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped plates with various boundary conditions, has the feature that it yields highly accurate natural frequencies thanks to its effective theoretical formulation, compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that it can be applicable for only convex plates. It was revealed that the NDIF method offers very inaccurate natural frequencies or no solution for concave cavities. To overcome the weak point, the paper proposes the sub-domain method of dividing a concave plate into several convex domains. Finally, the validity of the proposed method is verified in various case studies, which indicate that natural frequencies obtained by the proposed method are very accurate compared to the exact method and FEM(ANSYS).

POSITIVE SOLUTIONS FOR A NONLINEAR MATRIX EQUATION USING FIXED POINT RESULTS IN EXTENDED BRANCIARI b-DISTANCE SPACES

  • Reena, Jain;Hemant Kumar, Nashine;J.K., Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.709-730
    • /
    • 2022
  • We consider the nonlinear matrix equation (NMEs) of the form 𝓤 = 𝓠 + Σki=1 𝓐*iℏ(𝓤)𝓐i, where 𝓠 is n × n Hermitian positive definite matrices (HPDS), 𝓐1, 𝓐2, . . . , 𝓐m are n × n matrices, and ~ is a nonlinear self-mappings of the set of all Hermitian matrices which are continuous in the trace norm. We discuss a sufficient condition ensuring the existence of a unique positive definite solution of a given NME and demonstrate this sufficient condition for a NME 𝓤 = 𝓠 + 𝓐*1(𝓤2/900)𝓐1 + 𝓐*2(𝓤2/900)𝓐2 + 𝓐*3(𝓤2/900)𝓐3. In order to do this, we define 𝓕𝓖w-contractive conditions and derive fixed points results based on aforesaid contractive condition for a mapping in extended Branciari b-metric distance followed by two suitable examples. In addition, we introduce weak well-posed property, weak limit shadowing property and generalized Ulam-Hyers stability in the underlying space and related results.

ON GENERALIZED (𝛼, 𝛽)-NONEXPANSIVE MAPPINGS IN BANACH SPACES WITH APPLICATIONS

  • Akutsah, F.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.663-684
    • /
    • 2021
  • In this paper, we present some fixed point results for a general class of nonexpansive mappings in the framework of Banach space and also proposed a new iterative scheme for approximating the fixed point of this class of mappings in the frame work of uniformly convex Banach spaces. Furthermore, we establish some basic properties and convergence results for our new class of mappings in uniformly convex Banach spaces. Finally, we present an application to nonlinear integral equation and also, a numerical example to illustrate our main result and then display the efficiency of the proposed algorithm compared to different iterative algorithms in the literature with different choices of parameters and initial guesses. The results obtained in this paper improve, extend and unify some related results in the literature.