Acknowledgement
First, Duangkamon Kitkuan would like to thank the support of the Research and Development Institute, Rambhaibarni Rajabhat University. Finally, Sompob Saelee would like to thank the support of the Research and Development Institute, Bansomdejchaopraya Rajabhat University.
References
- M.U. Ali, T. Kamram and E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstr. Appl. Anal., 2014 (2014), Article ID 141489.
- V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Babe-Bolyai Univ. Cluj-Napoca, 3(1) (1993), 3-9.
- V. Berinde, Iterative approximation of fixed points, Editura Efemeride, Baia Mare, Romania, 2002.
- R.M. Bianchini and M. Grandolfi, Transformazioni di tipo contracttivo generalizzato in uno spazio metrico, Atti Acad. Naz. Lincei, VII. Ser., Rend., Cl. Sci. Fis. Mat, Nature, 45 (1968), 212-216.
- L. Budhia, H. Aydi, A.H. Ansari and D. Gopal, Some new fixed point results in rectangular metric spaces with an application to fractional-order functional differential equations, Nonlinear Anal.: Model. Control, 25(4) (2020), 580-597.
- E. Karapinar and B. Samet, Generalized α-ψ contractive type mappings and related fixed point theorems with applications, Abst. Appl. Anal., 2012 (2012), Article ID 793486, 17 pages.
- F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat, 29(6) (2015), 1189-1194. https://doi.org/10.2298/FIL1506189K
- P. Kumam, D. Gopal and L. Budhiyi, A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., 8(1) (2017), 113-119.
- H. Lakzian, D. Gopal and W. Sintunavarat, New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations, J. Fixed Point Theory Appl., 18(2) (2022), 251-266.
- A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via simulation functions, J. Nonlinear Sci. Appl., 8 (2015), 1059-1069. https://doi.org/10.22436/jnsa.008.06.16
- D. O'Regan, N. Shahzad and R.P. Agarwal, Fixed point theory for generalized contractive maps on spaces with vector-valued metrics, Fixed Point Theory and Appl., (Eds. Y.J. Cho, J.K. Kim, S. M. Kang), Vol. 6, Nova Sci. Publ., New York, 2007, 143-149.
- A. Padcharoen, D. Gopal, P. Chaipunya and P. Kumam, Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory Appl., 2016(1) (2016), 1-12. https://doi.org/10.1186/s13663-015-0491-2
- A. Padcharoen and J.K. Kim, Berinde type results via simulation functions in metric spaces, Nonlinear Funct. Anal. Appl., 25(3) (2020), 511-523.
- A. Padcharoen, P. Kumam, P. Saipara and P. Chaipunya, Generalized Suzuki type Z-contraction in complete metric spaces, Kragujevac J. Math., 42(3) (2018), 419-430. https://doi.org/10.5937/KgJMath1803419P
- O. Popescu, Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014:90 (2014). https://doi.org/10.1186/1687-1812-2014-190
- I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, Romania, 2001.
- I.A. Rus, Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Clui-Napoca, 1979
- P. Saipara, P. Kumam and P. Bunpatcharacharoen, Some results for generalized Suzuki type Z-contraction in θ metric spaces, Thai J. Math., (2018), 203-219.
- B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mapping, Nonlinear Anal., 75(4) (2012 ), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014