DOI QR코드

DOI QR Code

COMMON FIXED POINT FOR RECIPROCALLY CONTINUOUS AND WEAKLY COMPATIBLE MAPS IN A G-METRIC SPACE

  • Swapna, P. (Department of Mathematics, JNTUH College of Engg. (MVSR Engineering College)) ;
  • Phaneendra, T. (Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology) ;
  • Rajashekar, M.N. (Department of Mathematics, JNTUH College of Engg.)
  • Received : 2021.07.04
  • Accepted : 2022.03.20
  • Published : 2022.09.01

Abstract

A brief comparative survey of some generalizations of a metric space with three dimensional metric structures and different forms of the triangle inequality is done along with their topological properties. Then a common fixed point is obtained for reciprocally continuous and compatible self-maps in a G-metric space. Further, a common fixed point theorem is proved for a pair of weakly compatible self-maps on a G-metric space with the common limit range property.

Keywords

Acknowledgement

The authors are highly thankful to the referee/referees for their invaluable suggestions in improving the paper.

References

  1. C.T. Aage and J.N. Salunke, Some fixed points theorems in generalized D*-metric spaces, Applied Sciences, 12 (2010), 1-13.
  2. M. Abbas, S.H. Khan and T. Nazir, Common fixed points of R-weakly commuting maps in generalized metric spaces, Fixed Point Theory and Appl., 41 (2011), 1-11.
  3. R.P. Agarwal, E. Karapnar and A.F.R. Lopez, Last remarks on G-metric spaces and related fixed point theorems, RACSAM (2015), doi:10.1007/s13398-015-0242-6.
  4. B. Ahmad, M. Ashraf and B.E. Rhoades, Fixed point theorems for expansive mappings in D-metric spaces, Indian J. Pure Appl. Math., 32 (2001), 1513-1518.
  5. M.R. Ahmadi Zand and A.D. Nezhad, A generalization of partial metric spaces, J. Contem. Appl. Math., 1 (2011), 85-92.
  6. M.A. Alghamdi, N. Hussain and P. Salimi, Fixed point and coupled fixed point theorems in b-metric like spaces, J. Inequal. Appl., (2013), Article ID: 402.
  7. H. Aydi, S. Chauhan and S. Radenovic, Fixed points of weakly compatible mappings in G-metric spaces satisfying common limit range property, Facta Univ. Ser. Math. Inform., 28 (2013), 197-210.
  8. B. Azadifar, M. Maramaei and G. Sadeghi, On the modular G-metric spaces and fixed point theorems, J. Nonlinear Sci. Appl., 6 (2013), 293-304. https://doi.org/10.22436/jnsa.006.04.07
  9. A. Bataihah, T. Qawasmeh and M. Shatnawi, Discussion on b-metric spaces and related results in metric and G-metric spaces, Nonlinear Funct. Anal. Appl., 27(2) (2022), 233-247.
  10. B.C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.
  11. B.C. Dhage, A.M. Pathan and B.E. Rhoades, A general existence principle for fixed point theorems in D-metric spaces, Int. J. Math. Math. Sci., 23 (2000), 441-448. https://doi.org/10.1155/S0161171200001587
  12. S. Gahler, 2-metrische Raume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115-148. https://doi.org/10.1002/mana.19630260109
  13. M. Jleli and B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory and Appl., (2012):210, 1-7.
  14. G. Jungck, Compatible self-maps and common fixed Point, Int. J. Math. Math. Sci., 9 (1986), 771-779. https://doi.org/10.1155/S0161171286000935
  15. G. Jungck, Common fixed points for non continuous and non self-mappings on a metric space, Far East J. Math. Sci., 4(2) (1996), 199-212.
  16. A. Karami, S. Sedghi, N. Shobe and H.G. Hyun, Fixed point results on S-metric space via simulation functions, Nonlinear Funct. Anal. Appl., 24(4) (2019), 665-674.
  17. E. Karapinar and A. Ravi Paul, Further fixed point results on G-metric spaces, Fixed Point Theory and Appl., 154 (2013), 1-19, doi: 10.1186/1687-1812-2013-154.
  18. Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proc. Inter. Conference on Fixed Point Theory and Appl. Valencia, 7(2) (2003), 189-198.
  19. Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2) (2006), 289-297.
  20. Z. Mustafa, H. Aydi and E. Karapnar, On common fixed points in G-metric spaces using (EA) property, Comput. Math. Appl., 64(6) (2012), 1944-1956. https://doi.org/10.1016/j.camwa.2012.03.051
  21. S.V.R. Naidu, and J. Rajendra Prasad, Fixed point theorems in 2-metric spaces, Indian J. Pure Appl. Math., 17(8) (1986), 974-993.
  22. S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the topology of D-metric spaces and generation of D-metric spaces from metric spaces, Int. J. Math. Math. Sci., 51 (2004), 2719-2740.
  23. S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On the concepts of balls in a D-metric space, Int. J. Math. Math. Sci., 2005, 133-141, doi: 10.1155/IJMMS.2005.133.
  24. S.V.R. Naidu, K.P.R. Rao and N. Srinivasa Rao, On convergent sequences and fixed point theorems in D-metric space, Int. J. Math. Math. Sci., 12 (2005), 1969-1988, doi: 10.1155/IJMMS.2005.1969.
  25. R.P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188 (1994), 436-440. https://doi.org/10.1006/jmaa.1994.1437
  26. R.P. Pant, A common fixed point theorem under a new condition, Indian J. Pure Appl. Math., 30(2) (1999), 147-152.
  27. H.K. Pathak, Y.J. Cho and S.M. Kang, Remarks on R-weakly commuting mappings and common fixed point theorems, Bull. Korean Math. Soc., 17 (1997), 247-257.
  28. H.K. Pathak and M.S. Khan, A Comparision of Various Types of Compatible Maps and Common Fixed Points, Indian. J. Pure Appl. Math., 28(4) (1997), 477-485.
  29. T. Phaneendra and V. Sivarama Prasad, Two Generalized common fixed point theorems involving compatibility and property E.A., Demon. Math., 47(2-3) (2014), 449-458.
  30. M. Pitchaimani, Pavana Devassykutty and W.H. Lim, Fixed point theorems for multivalued nonlinear contraction mappings in G-metric space, Nonlinear Funct. Anal. Appl., 23(4) (2018), 723-742.
  31. M.M. Rezaee, S. Sedghi and K.S. Kim, Coupled common fixed point results in ordered S-metric spaces, Nonlinear Funct. Anal. Appl., 23(3) (2019), 595-619.
  32. B.E. Rhoades, Some fixed point theorems in G-metric spaces which are special cases of metric space results, Jnanabha, 46 (2016), 1-20.
  33. A. Roldan and E. Karapnar, Some multidimensional fixed point theorems on partially pre-ordered G*-metric spaces under (ψ, φ)-contractivity conditions, Fixed Point Theory Appl., 158 (2013).
  34. A. Roldan, E. Karapnar and P. Kumam, G-Metric spaces in any number of arguments and related fixed-point theorems, Fixed Point Theory Appl., 2014:13.
  35. Roldn-Lpez-de-Hierro et al., A short-note on Common fixed point theorems for noncompatible self-maps in generalized metric spaces, J. Ineq. Appl., 2015:55.
  36. K.P.R. Sastry, K.K.M. Sarma and P.K. Kumari, Fixed point theorems for ψ-contractions and φ-contractions in quasi S- metric spaces, IJMA, 9(12) (2018), 1-14.
  37. Sedghi et al., Common fixed point of four maps in Sb-metric spaces, J. Linear Topol. Algebra, 5(2) (2016), 93-104.
  38. Shaban Sedghi, Nabi Shobe and Abdelkrim Aliouche, A generalization of fixed point theorems in S-metric spaces, Matematiqki Vesnik, 64 (2012), 258-266.
  39. Shaban Sedghi, Nabi Shobe and Haiyun Zhou, A common fixed point theorem in D*-metric spaces, Fixed Point Theory Appl., 2007, 1-3.
  40. S. Sessa, On Weak commutativity Condition of Mappings in Fixed Point Considerations, Publ. Inst. Math. Debre., 32 (1982), 149-153.
  41. S.L. Singh and Anita Tomar, Weaker forms of commuting maps and existence of fixed points, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 10(3) (2003), 145-161.
  42. R. Tiwari and S. Rajput, Common fixed point theorems in G-fuzzy metric spaces with applications, Nonlinear Funct. Anal. Appl., 26(5) (2021), 971-983.
  43. Z. Yang, Common fixed point theorems for non-compatible self-maps in generalized metric spaces, J. Ineq. Appl., 2004: Article ID 275.