• Title/Summary/Keyword: Ternary logic circuit

Search Result 16, Processing Time 0.031 seconds

Circuit Design of a Ternary Flip-Flop Using Ternary Logic Gates

  • Kim, Jong-Heon;Hwang, Jong-Hak;Park, Seung-Young;Kim, Heung-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.347-350
    • /
    • 2000
  • We present the design of ternary flip-flop which is based on ternary logic so as to process ternary data. These flip-flops are fabricated with ternary voltage mode NOR, NAND, INVERTER gates. These logic gate circuits are designed using CMOS and obtained the characteristics of a lower voltage, a lower power consumption as compared to other gates. These circuits have been simulated with the electrical parameters of a standard 0.25 micron CMOS technology and 2.5 volts supply voltage. The Architecture of proposed ternary flip-flop is highly modular and well suited for VLSI implementation, only using ternary gates.

  • PDF

Design of Ternary Logic Circuits Based on Reed-Muller Expansions (Reed-Muller 전개식에 의한 3치 논리회로의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.491-499
    • /
    • 2007
  • In this paper, we present a design method of the ternary logic circuits based on Reed-Muller expansions. The design method of the presented ternary logic circuits checks the degree of each variable for the coefficients of Reed-Holler Expansions(RME) and determines the order of optimal control input variables that minimize the number of Reed-Muller Expansions modules. The order of optimal control input variables is utilized the computation of circuit cost matrix. The ternary logic circuits of the minimized tree structures to be constructed by RME modules based on Reed-Muller Expansions are realized using the computation results of its circuit cost matrix. This method is only performed under unit time in order to search for the optimal control input variables. Also, this method is able to be programmed by computer and the run time on programming is $3^n$.

Area- and Energy-Efficient Ternary D Flip-Flop Design

  • Taeseong Kim;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.134-138
    • /
    • 2024
  • In this study, we propose a ternary D flip-flop using tristate ternary inverters for an energy-efficient ternary circuit design of sequential logic. The tristate ternary inverter is designed by adding the functionality of the transmission gate to a standard ternary inverter without an additional transistor. The proposed flip-flop uses 18.18% fewer transistors than conventional flip-flops do. To verify the advancement of the proposed circuit, we conducted an HSPICE simulation with CMOS 28 nm technology and 0.9 V supply voltage. The simulation results demonstrate that the proposed flip-flop is better than the conventional flip-flop in terms of energy efficiency. The power consumption and worst delay are improved by 11.34% and 28.22%, respectively. The power-delay product improved by 36.35%. The above simulation results show that the proposed design can expand the Pareto frontier of a ternary flip-flop in terms of energy consumption. We expect that the proposed ternary flip-flop will contribute to the development of energy-efficient sensor systems, such as ternary successive approximation register analog-to-digital converters.

The Design of the Ternary Sequential Logic Circuit Using Ternary Logic Gates (3치 논리 게이트를 이용한 3치 순차 논리 회로 설계)

  • 윤병희;최영희;이철우;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.10
    • /
    • pp.52-62
    • /
    • 2003
  • This paper discusses ternary logic gate, ternary D flip-flop, and ternary four-digit parallel input/output register. The ternary logic gates consist of n-channel pass transistors and neuron MOS(νMOS) threshold inverters on voltage mode. They are designed with a transmission function using threshold inverter that are in turn, designed using Down Literal Circuit(DLC) that has various threshold voltages. The νMOS pass transistor is very suitable gate to the multiple-valued logic(MVL) and has the input signal of the multi-level νMOS threshold inverter. The ternary D flip-flop uses the storage element of the ternary data. The ternary four-digit parallel input/output register consists of four ternary D flip-flops which can temporarily store four-digit ternary data. In this paper, these circuits use 3.3V low power supply voltage and 0.35m process parameter, and also represent HSPICE simulation result.

A Study on the Synthesis of Multivalued Logic System Using Current-Mode Techniques (전류방식기법에 의한 다치론이계의 구성에 관한 연구)

  • 한만춘;신명철;박종국;최정문;김락교;이래호
    • 전기의세계
    • /
    • v.28 no.1
    • /
    • pp.43-52
    • /
    • 1979
  • Recently, interest in multivalued(MV) logic system has been increased, despites the apparent difficulties for practical application. This is because of the many advantages of the MV compared with the 2-valued logic systems, such as; (a) higher speed of arithmetical operation on account of the smaller number of digits required for a given data, (b) better utilization of data transmission channels on account of the higher information contents per line, (c) potentially higher density of information storage. This paper describes a MV switching theory and experimental MV logic elements based on current-mode logic technique. These elements tried were a 3-stable pulse generator, a ternary AND, a ternary OR, a MT circuit and a ternary inverter. Tristable flops which are indispensable for constituting a ternary shift register are synthesized using these gates. A BCD to TCD decoder, and vice versa, are proposed by using a ternary inverter and some binary gates. Thus, the feasibility of a large scale MV digital system has been demonstrate.

  • PDF

Fast Synthesis based on Ternary Universal Logic Module $U_h$ (3치 범용 논리 모듈 $U_h$에 의한 빠른 논리 합성)

  • 김영건;김종오;김흥수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.1
    • /
    • pp.57-63
    • /
    • 1994
  • The logic function synthesis using ULM U$_h$ is constructed based on canonic Reed-Muller expansion coefficient for a given function. This paper proposes the fast synthesis algorithm using ULM U$_h$ for ternary function. By using circuit cost and synthesis method of proposed in this paper, order of control input variable minimum number of ULM U$_h$ can be decided in the synthesis of n-variable ternary function. Accordingly, this method enables to optimum circuit realization for ternary function synthesis using ULM ULM U$_h$ and can be applied to ternary function synthesis using ULM U$_h$. The complexity of search for select the order of all control input variables is (n+2)(n-1)/2.

  • PDF

A Study on the Parallel Ternary Logic Circuit Design to DCG Property with 2n nodes ($2^n$개의 노드를 갖는 DCG 특성에 대한 병렬3치 논리회로 설계에 관한 연구)

  • Byeon, Gi-Yeong;Park, Seung-Yong;Sim, Jae-Hwan;Kim, Heung-Su
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.6
    • /
    • pp.42-49
    • /
    • 2000
  • In this paper, we propose the parallel ternary logic circuit design algorithm to DCG Property with 2$^n$ nodes. To increase circuit integration, one of the promising approaches is the use of multiple-valued logic(MVL). It can be useful methods for the realization of compact integrated circuit, the improvement of high velocity signal processing using parallel signal transmission and the circuit design algorithm to optimize and satisfy the circuit property. It is all useful method to implement high density integrated circuit. In this paper, we introduce matrix equation to satisfy given DCG with 2$^n$ nodes, and propose the parallel ternary logic circuit design process to circuit design algorithm. Also, we propose code assignment algorithm to satisfy for the given DCG property. According to the simulation result of proposed circuit design algorithm, it have the following advantage ; reduction of the circuit signal lines, computation time and costs.

  • PDF

Novel Design of 8T Ternary SRAM for Low Power Sensor System

  • Jihyeong Yun;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.152-157
    • /
    • 2024
  • In this study, we propose a novel 8T ternary SRAM that can process three logic values (0, 1, and 2) with only two additional transistors, compared with the conventional 6T binary SRAM. The circuit structure consists of positive and negative ternary inverters (PTI and NTI, respectively) with carbon-nanotube field-effect transistors, replacing conventional cross-coupled inverters. In logic '0' or '2,' the proposed SRAM cell operates the same way as conventional binary SRAM. For logic '1,' it works differently as storage nodes on each side retain voltages of VDD/2 and VDD, respectively, using the subthreshold current of two additional transistors. By applying the ternary system, the data capacity increases exponentially as the number of cells increases compared with the 6T binary SRAM, and the proposed design has an 18.87% data density improvement. In addition, the Synopsys HSPICE simulation validates the reduction in static power consumption by 71.4% in the array system. In addition, the static noise margins are above 222 mV, ensuring the stability of the cell operation when VDD is set to 0.9 V.

Implementation of Ternary Adder and Multiplier Using Current-Mode CMOS (전류모드 CMOS에 의한 3치 가산기 및 승산기의 구현)

  • Seong, Hyeon-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.142-144
    • /
    • 2006
  • In this paper, the Ternary adder and multiplier are implemented by current-mode CMOS. First, we implement the ternary T-gate using current-mode CMOS which have an effective availability of integrated circuit design. Second, we implement the circuits to be realized 2-variable ternary addition table and multiplication table over finite fields GF(3) with the ternary T-gates. Finally, these operation circuits are simulated by Spice under $1.5{\mu}m$ CMOS standard technology, $1.5{\mu}m$ unit current, and 3.3V VDD voltage. The simulation results have shown the satisfying current characteristics. The ternary adder and multiplier implemented by current-mode CMOS are simple and regular for wire routing and possess the property of modularity with cell array.

  • PDF

A Study on the Information Reversibility of Quantum Logic Circuits (양자 논리회로의 정보 가역성에 대한 고찰)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.189-194
    • /
    • 2017
  • The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.