Acknowledgement
This research was supported by the Nanomaterials Development Program through the National Research Foundation of Korea (NRF) (2022M3H4A1A04096496) funded by the Ministry of Science and ICT, Korea.
References
- C. J. Jhang, C. X. Xue, J. M. Hung, F. C. Chang, and M. F. Chang, "Challenges and trends of SRAM-based computing-in-memory for AI edge devices", IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 68, No. 5, pp. 1773-1786, 2021. https://doi.org/10.1109/TCSI.2021.3064189
- J. Y. Kim, B. Kim, and T. T. H. Kim, Processing-in-Memory for AI, Springer, Cham, CH, pp. 1-165, 2022.
- H. N. Patel, F. B. Yahya, and B. H. Calhoun, "Optimizing SRAM bitcell reliability and energy for IoT applications", Proc. of the 17th Int. Symp. Qual. Electron. Design, pp. 12- 17, Santa Clara, CA, USA, 2016.
- J. R. Dinesh Kumar, C. Ganesh Babu, V. R. Balaji, K. Priyadharsini, and S. P. Karthi, "Performance investigation of various SRAM cells for IoT based wearable biomedical devices", Proc. of 5th International Conference Information, Communication & Computing Technology (ICICCT-2020), pp. 573-588, New Delhi, India, 2021.
- V. Sharma, S. Vishvakarma, S. S. Chouhan, and K. Halonen, "A write?improved low?power 12T SRAM cell for wearable wireless sensor nodes", Int. J. Circuit Theory Appl., Vol. 46, No. 12, pp. 2314-2333, 2018. https://doi.org/10.1002/cta.2555
- H. Lam, F. Guo, H. Qiu, M. Zhang, H. Jiao, and S. Zhang, "Pseudo multi-port SRAM circuit for image processing in display drivers", IEEE Trans. Circuits Syst. Video Technol., Vol. 31, No. 5, pp. 2056-2062, 2020.
- Y. Taur, "CMOS design near the limit of scaling", IBM J. Res. Develop., Vol. 46, No. 2.3, pp. 213-222, 2002. https://doi.org/10.1147/rd.462.0213
- S. Kim, S. Y. Lee, S. Park, K. R. Kim, and S. Kang, "A logic synthesis methodology for low-power ternary logic circuits", IEEE Trans. Circuits Syst. I Regul. Pap., Vol. 67, No. 9, pp. 3138-3151, 2020. https://doi.org/10.1109/TCSI.2020.2990748
- J. Yoon, S. Baek, S. Kim, and S. Kang, "Optimizing ternary multiplier design with fast ternary adder", IEEE Trans. Circuits Syst. II Express Briefs, Vol. 70, No. 2, pp. 766-770, 2022.
- V. A. Bespalov, N. A. Dyuzhev, and V. Yu Kireev, "Possibilities and limitations of CMOS Technology for the production of various Microelectronic systems and devices", Nanobiotechnology Reports, Vol. 17, No. 1, pp. 24-38, 2022. https://doi.org/10.1134/S2635167622010037
- Y.-B. Kim and K. K. Kim, "Sensor circuit design using carbon nanotube FET for artificial skin", J. Korea Soc. Ind. Inform. Syst., Vol. 19, No. 3, pp. 41-48, 2014.
- Y. Choi, S. Kim, K. Lee, and S. Kang, "Design and analysis of a low-power ternary SRAM", Proc. of 2021 IEEE Int. Symp. Circuits Syst. (ISCAS), pp. 1-4, Daegu, Korea, 2021.
- J. Deng and H-S. P. Wong, "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part I: Model of the intrinsic channel region", IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3186-3194, 2007. https://doi.org/10.1109/TED.2007.909030
- J. Deng and H-S. P. Wong, "A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application-Part II: Full device model and circuit performance benchmarking", IEEE Trans. Electron Devices, Vol. 54, No. 12, pp. 3195-3205, 2007. https://doi.org/10.1109/TED.2007.909043
- B. Srinivasu and K. Sridharan, "Low-power and high-performance ternary SRAM designs with application to CNTFET technology", IEEE Trans. Nanotechnol., Vol. 20, pp. 562-566, 2021. https://doi.org/10.1109/TNANO.2021.3096123
- B. H. Calhoun and A. P. Chandrakasan, "Static noise margin variation for sub-threshold SRAM in 65-nm CMOS", IEEE J. Solid-State Circuits, Vol. 41, No. 7, pp. 1673-1679, 2006. https://doi.org/10.1109/JSSC.2006.873215