DOI QR코드

DOI QR Code

Design of Ternary Logic Circuits Based on Reed-Muller Expansions

Reed-Muller 전개식에 의한 3치 논리회로의 설계

  • 성현경 (상지대학교 컴퓨터정보공학부)
  • Published : 2007.03.31

Abstract

In this paper, we present a design method of the ternary logic circuits based on Reed-Muller expansions. The design method of the presented ternary logic circuits checks the degree of each variable for the coefficients of Reed-Holler Expansions(RME) and determines the order of optimal control input variables that minimize the number of Reed-Muller Expansions modules. The order of optimal control input variables is utilized the computation of circuit cost matrix. The ternary logic circuits of the minimized tree structures to be constructed by RME modules based on Reed-Muller Expansions are realized using the computation results of its circuit cost matrix. This method is only performed under unit time in order to search for the optimal control input variables. Also, this method is able to be programmed by computer and the run time on programming is $3^n$.

본 논문에서는 Reed-Muller 전개식에 의한 3치 논리 회로를 설계하는 한 가지 방법을 제시하였다. 제시된 3치 논리 회로의 설계 방법은 Reed-Muller 전개식의 계수에 대하여 모든 변수의 차수를 검사하여 RME 모듈(Reed-Muller Expansions module)의 수를 최소화하는 최적의 제어 입력 변수의 순서를 결정한다. 최적의 제어 입력 변수의 순서는 회로 비용 행렬의 계산에 사용되며, 이 회로 비용 행렬의 계산 결과를 이용하여 Reed-Muller 전개식에 의한 RME 모듈의 나무 구조의 3치 논리 회로를 설계한다. 제시된 방법은 최적 제어 입력 변수를 찾는데 유일하게 단위시간 내에 수행되며, 컴퓨터 프로그램이 가능하고, 프로그래밍 수행 시간이 $3^n$이다.

Keywords

References

  1. M. Kameyama, 'Toward the Age of Beyond Binary Electronics and Systems,' IEEE Proc. 20th ISMVL, pp.162-166, May 1990
  2. D. Etiemble, 'On the Performance of Multi-Valued Integrated Circuits: Past, Present and Future,' IEICE Trans. Electron., vol. E76-C, No.3, pp.364-371, Mar 1993
  3. Z. Zilic and Z. G. Vranesic, 'New Interpolation Algorithms for Multiple-Valued Reed-Muller Forms,' IEEE Proc. 26th ISMVL, pp.16-23, May 1996
  4. H. Wu, M. A. Perkowski, X. Zeng and N. Zhuang, 'Generalized Partially-Mixed Polarity Reed-Muller Expansion and its Fast Computation,' IEEE Trans. Comput., vol. 45, No.9, pp.1084-1088, Sept. 1996 https://doi.org/10.1109/12.537134
  5. B. Harking and C. Moraga, 'Efficient Derivation of Reed-Muller Expansions in Multiple-Valued Logic Systems,' IEEE Proc. 22nd ISMVL, pp.436-441, May 1992
  6. T. Higuchi and M. Kameyama, 'Synthesis of Optimal T-Gate Networks in Multiple- Valued Logic,' IEEE Proc. 9th ISMVL, pp.190-195, May 1979
  7. V. H. Tokmen and S. L. Hurst, 'A Consideration of Universal Logic Modules for Ternary Synthesis Based upon Reed- Muller Coefficient,' IEEE Proc. 9th ISMVL, pp.248-256, May 1979
  8. Z. Hu, X. Wu,'The Logic Synthesis Using Ternary Universal Logic Module UhS,' IEEE Proc. 17th ISMVL, pp.250-259, May 1987
  9. Q. Hong and B. Fei, 'Fast Synthesis for Ternary Reed-Muller Expansion,' IEEE Proc. 23rd ISMVL, pp.14-16,May 1993
  10. B. Fei and Q. Hong, 'Calculation of Ternary Mixed Polarity Function Vector,' IEEE Proc. 23rd ISMVL, pp.236-238, May 1993
  11. D. Jankovic, R. Stankovic and R. Drechsler, 'Efficient Calculation of Fixed-Polarity Polynomial Expressions for Multiple-Valued Logic Functions,' IEEE Proc. 32nd ISMVL, pp.76-82, May 2002
  12. B. J. Falkowski and C. Fu, 'Polynomial Expansions over GF(3) on Fastest Transformation,' IEEE Proc. 33rd ISMVL, pp.40-45, May 2003
  13. A. N. Al-Rabadi, 'Reversible Fast Permutation Transforms for Quantum Circuit Synthesis,' IEEE Proc. 34th ISMVL, pp.81-86, May 2004