DOI QR코드

DOI QR Code

A Study on the Information Reversibility of Quantum Logic Circuits

양자 논리회로의 정보 가역성에 대한 고찰

  • Park, Dong-Young (Dept. of Information and Telecommunication Eng., Gangneung-Wonju National University)
  • 박동영 (강릉원주대학교 정보통신공학과)
  • Received : 2017.01.04
  • Accepted : 2017.02.24
  • Published : 2017.02.28

Abstract

The reversibility of a quantum logic circuit can be realized when two reversible conditions of information reversible and energy reversible circuits are satisfied. In this paper, we have modeled the computation cycle required to recover the information reversibility from the multivalued quantum logic to the original state. For modeling, we used a function embedding method that uses a unitary switch as an arithmetic exponentiation switch. In the quantum logic circuit, if the adjoint gate pair is symmetric, the unitary switch function shows the balance function characteristic, and it takes 1 cycle operation to recover the original information reversibility. Conversely, if it is an asymmetric structure, it takes two cycle operations by the constant function. In this paper, we show that the problem of 2-cycle restoration according to the asymmetric structure when the hybrid MCT gate is realized with the ternary M-S gate can be solved by equivalent conversion of the asymmetric gate to the gate of the symmetric structure.

양자논리회로의 가역성은 정보 가역적 및 에너지 가역적 회로라는 두 가지 가역 조건을 만족할 때 실현될 수 있다. 본 논문은 다치 양자논리 회로에서 원래상태로의 정보가역성 회복에 필요한 연산 사이클을 모델링하였다. 모델링을 위해 유니터리 스위치를 산술 멱승 스위치로 사용하는 함수 임베딩 방법을 사용하였다. 양자논리회로에서 수반게이트 쌍이 대칭이면 유니터리 스위치함수가 균형함수 특성을 보임으로써 원래상태의 정보 가역성 회복에 1 사이클 연산이 소요되었다. 반대로 비대칭 구조이면 상수 함수에 의해 2 사이클 연산이 소요되었다. 본 논문은 ternary M-S 게이트로 hybrid MCT 게이트를 실현할 경우의 비대칭 구조에 따른 2 사이클 복원 문제는 비대칭 구조의 수반게이트들을 대칭구조의 수반게이트로 등가 변환하여 해결할 수 있음을 밝혔다.

References

  1. M. Perkowski and D. Shah, Design of Regular Reversible Quantum Circuits. Saarbrucken: LAP LAMBERT Academic Publishing, 2011.
  2. M. Bellac, A Short Introduction to Quantum Information and Quantum Computing. Cambridge: Cambridge University Press, 2006.
  3. Z. Sasanian, R. Wille, and D. Miller, "Realizing reversible circuits using a new class of quantum gates," In Design Automation Conf., San Francisco, USA, June 3-7, 2012, pp. 36-41.
  4. B. Mondal, P. Sarkar, P. Saha, and S. Chakraborty, "Synthesis of Balanced Ternary Reversible Logic Circuit", IEEE 43rd Int. Symp. on Multiple-Valued Logic, Toyama, Japan, May 22-24, 2013, pp. 334-339.
  5. C. Moraga, " On some Basic Aspects of Ternary Reversible and Quantum Computing", IEEE 44th Int. Symp. on Multiple-Valued Logic, Bremen, Germany, May 19-21, 2014. pp. 178-183.
  6. M. Lukac, M. Kameyama, M. Perkowski, P. Kerntopf, and C. Moraga, "Analysis of Faults in Reversible Computing," IEEE 44th Int. Symp. on Multiple-Valued Logic, Bremen, Germany, May 19-21, 2014. pp. 115-120.
  7. D. Park and Y. Jeong, "Realizing Mixed-Polarity MCT gates using NCV-$|v_1$ > Library," J. of the Korea Institute of Electronic Communication Science, vol. 11, no. 1, 2016, pp. 29-35. https://doi.org/10.13067/JKIECS.2016.11.1.29
  8. D. Park and Y. Jeong, "For new Duality Structure and its Application in the NCV-$|v_1$ > Library," J. of the Korea Institute of Electronic Communication Science, vol. 11, no. 2, 2016, pp. 165-170. https://doi.org/10.13067/JKIECS.2016.11.2.165
  9. D. Park and Y. Jeong, "A New Functional Synthesis Method for Macro Quantum Circuits Realized in Affine-Controlled NCV-Gates," J. of the Korea Institute of Electronic Communication Science, vol. 9, no. 4, 2014, pp. 447-454. https://doi.org/10.13067/JKIECS.2014.9.4.447
  10. S. Sultana and K. Radecka, "Rev-Map: A Direct Gateway from Classical Irreversible Network to Reversible Network," IEEE 41th Int. Symp. on Multiple-Valued Logic, Tuusula, Finland, May 23-25, 2011. pp. 147-152.
  11. D. Park and Y. Jeong, "Gate Cost Reduction Policy for Direct Irreversible-to- Reversible Mapping Method without Reversible Embedding," J. of the Korea Institute of Electronic Communication Science, vol. 9, no. 11, 2014, pp. 1233-1240. https://doi.org/10.13067/JKIECS.2014.9.11.1233