• Title/Summary/Keyword: Sum of Random Variables

Search Result 121, Processing Time 0.026 seconds

Parallelization of CUSUM Test in a CUDA Environment (CUDA 환경에서 CUSUM 검증의 병렬화)

  • Son, Changhwan;Park, Wooyeol;Kim, HyeongGyun;Han, KyungSook;Pyo, Changwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.476-481
    • /
    • 2015
  • We have parallelized the cumulative sum (CUSUM) test of NIST's statistical random number test suite in a CUDA environment. Storing random walks in an array instead of in scalar variables eliminates data dependence. The change in data structure makes it possible to apply parallel scans, scatters, and reductions at each stage of the test. In addition, serial data exchanges between CPU and GPU are removed by migrating CPU's tasks to GPU. Finally we have optimized global memory accesses. The overall speedup is 23 times over the sequential version. Our results contribute to improving security of random numbers for cryptographic keys as well as reducing the time for evaluation of randomness.

BERRY-ESSEEN BOUNDS OF RECURSIVE KERNEL ESTIMATOR OF DENSITY UNDER STRONG MIXING ASSUMPTIONS

  • Liu, Yu-Xiao;Niu, Si-Li
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.343-358
    • /
    • 2017
  • Let {$X_i$} be a sequence of stationary ${\alpha}-mixing$ random variables with probability density function f(x). The recursive kernel estimators of f(x) are defined by $$\hat{f}_n(x)={\frac{1}{n\sqrt{b_n}}{\sum_{j=1}^{n}}b_j{^{-\frac{1}{2}}K(\frac{x-X_j}{b_j})\;and\;{\tilde{f}}_n(x)={\frac{1}{n}}{\sum_{j=1}^{n}}{\frac{1}{b_j}}K(\frac{x-X_j}{b_j})$$, where 0 < $b_n{\rightarrow}0$ is bandwith and K is some kernel function. Under appropriate conditions, we establish the Berry-Esseen bounds for these estimators of f(x), which show the convergence rates of asymptotic normality of the estimators.

Symbolic Reliability Evaluation of Combinational Logic Circuit (조합논리회로의 기호적 신뢰도 계정)

  • 오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 1982
  • A method for finding the symbolic reliability expressision of a conbinational logic circuit is presented. The evaluation of the probabilities of the outputs can be symbolically evaluated by the Boolean operation named sharp operation, provided that every input of such a circuit can be treated as random variables with values set(0, 1) and the output of a circuit can be represented by a Boolean sum of produt expression.

  • PDF

ON THE COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES GENERATED BY ρ*-MIXING SEQUENCES

  • Ko, Mi-Hwa;Kim, Tae-Sung;Ryu, Dae-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.597-606
    • /
    • 2008
  • Let {$Y_{ij}-{\infty}\;<\;i\;<\;{\infty}$} be a doubly infinite sequence of identically distributed and ${\rho}^*$-mixing random variables with zero means and finite variances and {$a_{ij}-{\infty}\;<\;i\;<\;{\infty}$} an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of {${\sum}^n_{k=1}\;{\sum}^{\infty}_{i=-{\infty}}\;a_{i+k}Y_i/n^{1/p}$; $n\;{\geq}\;1$} under some suitable conditions. We extend Theorem 1.1 of Li and Zhang [Y. X. Li and L. X. Zhang, Complete moment convergence of moving average processes under dependence assumptions, Statist. Probab. Lett. 70 (2004), 191.197.] to the ${\rho}^*$-mixing case.

PRECISE ASYMPTOTICS FOR THE MOMENT CONVERGENCE OF MOVING-AVERAGE PROCESS UNDER DEPENDENCE

  • Zang, Qing-Pei;Fu, Ke-Ang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.585-592
    • /
    • 2010
  • Let {$\varepsilon_i:-{\infty}$$\infty$} be a strictly stationary sequence of linearly positive quadrant dependent random variables and $\sum\limits\frac_{i=-{\infty}}^{\infty}|a_i|$<$\infty$. In this paper, we prove the precise asymptotics in the law of iterated logarithm for the moment convergence of moving-average process of the form $X_k=\sum\limits\frac_{i=-{\infty}}^{\infty}a_{i+k}{\varepsilon}_i,k{\geq}1$

COMPLETE MOMENT CONVERGENCE OF MOVING AVERAGE PROCESSES WITH DEPENDENT INNOVATIONS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Choi, Yong-Kab
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.355-365
    • /
    • 2008
  • Let ${Y_i;-\infty<i<\infty}$ be a doubly infinite sequence of identically distributed and $\phi$-mixing random variables with zero means and finite variances and ${a_i;-\infty<i<\infty}$ an absolutely summable sequence of real numbers. In this paper, we prove the complete moment convergence of ${{\sum}_{k=1}^{n}\;{\sum}_{i=-\infty}^{\infty}\;a_{i+k}Y_i/n^{1/p};n\geq1}$ under some suitable conditions.

A Clarification of the Cauchy Distribution

  • Lee, Hwi-Young;Park, Hyoung-Jin;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2014
  • We define a multivariate Cauchy distribution using a probability density function; subsequently, a Ferguson's definition of a multivariate Cauchy distribution can be viewed as a characterization theorem using the characteristic function approach. To clarify this characterization theorem, we construct two dependent Cauchy random variables, but their sum is not Cauchy distributed. In doing so the proofs depend on the characteristic function, but we use the cumulative distribution function to obtain the exact density of their sum. The derivation methods are relatively straightforward and appropriate for graduate level statistics theory courses.

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.

A State-age Dependent Policy for a Shock Process - Structural Relationships of Optimal Policy -

  • Joo, Nam-Yun
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.1
    • /
    • pp.23-39
    • /
    • 1984
  • Consider a failure model for a stochastic system. A shock is any perturbation to the system which causes a random amount of damage to the system. Any of the shocks can cause the system to fail at shock times. The amount of damage at each shock is a function of the sum of the magnitudes of damage caused from all previous shocks. The times between shocks form a sequence of independent and identically distributed random variables. The system must be replaced upon failure at some cost but it also can be replaced before failure at a lower cost. The long term expected cost per unit time criterion is used. Structural relationships of the optimal replacement policy under the appropriate regularity conditions will be developed. And these relationships will provide theoretical background for the algorithm development.

  • PDF