DOI QR코드

DOI QR Code

BERRY-ESSEEN BOUNDS OF RECURSIVE KERNEL ESTIMATOR OF DENSITY UNDER STRONG MIXING ASSUMPTIONS

  • Liu, Yu-Xiao (School of Mathematics and Physics Henan University of Urban Construction) ;
  • Niu, Si-Li (Department of Mathematics Tongji University)
  • Received : 2016.02.18
  • Published : 2017.01.31

Abstract

Let {$X_i$} be a sequence of stationary ${\alpha}-mixing$ random variables with probability density function f(x). The recursive kernel estimators of f(x) are defined by $$\hat{f}_n(x)={\frac{1}{n\sqrt{b_n}}{\sum_{j=1}^{n}}b_j{^{-\frac{1}{2}}K(\frac{x-X_j}{b_j})\;and\;{\tilde{f}}_n(x)={\frac{1}{n}}{\sum_{j=1}^{n}}{\frac{1}{b_j}}K(\frac{x-X_j}{b_j})$$, where 0 < $b_n{\rightarrow}0$ is bandwith and K is some kernel function. Under appropriate conditions, we establish the Berry-Esseen bounds for these estimators of f(x), which show the convergence rates of asymptotic normality of the estimators.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. P. Doukhan, Mixing: Properties and Examples, Lecture Notes in Statistics, Vol. 85. Springer, Berlin, 1994.
  2. L. Gyorfi, Strong consistent density estimate from ergodic sample, J. Multivariate Anal. 11 (1981), no. 1, 81-84. https://doi.org/10.1016/0047-259X(81)90134-2
  3. P. Hall and C. C. Heyde, Martingale Limit Theory and its Application, Academic Press, New York, 1980.
  4. H. Y. Liang and J. I. Baek, Berry-Esseen bounds for density estimates under NA assumption, Metrika 68 (2008), no. 3, 305-322. https://doi.org/10.1007/s00184-007-0159-y
  5. H. Y. Liang and G. L. Fan, Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors, J. Multivariate Anal. 100 (2009), no. 1, 1-15. https://doi.org/10.1016/j.jmva.2008.03.006
  6. E. Liebscher, Strong convergence of sums of ${\alpha}$-mixing random variables with applications to density estimation, Stochastic Process. Appl. 65 (1996), no. 1, 69-80. https://doi.org/10.1016/S0304-4149(96)00096-8
  7. E. Liebscher, Estimating the density of the residuals in autoregressive models, Stat. Inference Stoch. Process. 2 (1999), no. 2, 105-117. https://doi.org/10.1023/A:1009924821271
  8. E. Masry, Recursive probability density estimation for weakly dependent stationary processes, IEEE. Trans. Inform. Theory 32 (1986), no. 2, 254-267. https://doi.org/10.1109/TIT.1986.1057163
  9. E. Masry, Almost sure convergence of recursive density estimators for stationary mixing processes, Statist. Probab. Lett. 5 (1987), no. 4, 249-254. https://doi.org/10.1016/0167-7152(87)90100-3
  10. E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist. 33 (1962), 1065-1076. https://doi.org/10.1214/aoms/1177704472
  11. V. V. Petrov, Limit Theorems of Probability Theory, Oxford Univ. Press Inc., New York, 1995.
  12. P. M. Robinson, Nonparametric estimators for time series, J. Time Ser. Anal. 4 (1983), no. 3, 185-207. https://doi.org/10.1111/j.1467-9892.1983.tb00368.x
  13. M. Rosenblatt, A central limit theorem and strong mixing conditions, Proc. Nat. Acad. Sci. 4 (1956), 43-47.
  14. G. G. Roussas, Nonparametric estimation in mixing sequences of random variables, J. Statist. Plann. Inference 18 (1988), no. 2, 135-149. https://doi.org/10.1016/0378-3758(88)90001-8
  15. G. G. Roussas, Asymptotic normality of the kernel estimate under dependence conditions: application to hazard rate, J. Statist. Plann. Inference 25 (1990), no. 1, 81-104. https://doi.org/10.1016/0378-3758(90)90008-I
  16. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, Wiley, New York, 1992.
  17. B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, New York, 1986.
  18. L. T. Tran, Recursive density estimation under dependence, IEEE. Trans. Inform. Theory 35 (1989), no. 5, 1103-1108. https://doi.org/10.1109/18.42230
  19. L. T. Tran, Recursive kernel density estimation under a weak dependence condition, Ann. Inst. Statist. Math. 42 (1990), no. 2, 305-329. https://doi.org/10.1007/BF00050839
  20. E. J. Wegman and H. I. Davies, Remarks on some recursive estimators of a probability density, Ann. Statist. 7 (1979), no. 2, 316-327. https://doi.org/10.1214/aos/1176344616
  21. W. Yang and S. Hu, The Berry-Esseen bounds for kernel density estimator under dependent sample, J. Inequal. Appl. 2012 (2012), 287, 13 pp. https://doi.org/10.1186/1029-242X-2012-287
  22. S. C. Yang, Maximal moment inequality for partial sums of strong mixing sequences and application, Act. Math. Sinica (Engl. Ser.) 23 (2007), no. 6, 1013-1024. https://doi.org/10.1007/s10114-005-0841-9
  23. S. C. Yang and Y. M. Li, Uniformly asymptotic normality of the regression weighted estimator for strong mixing samples, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 5, 1163-1170.

Cited by

  1. -mixing assumptions pp.1029-0311, 2019, https://doi.org/10.1080/10485252.2019.1566542