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PRECISE ASYMPTOTICS FOR THE MOMENT
CONVERGENCE OF MOVING-AVERAGE

PROCESS UNDER DEPENDENCE

Qing-Pei Zang and Ke-Ang Fu

Abstract. Let {εi : −∞ < i < ∞} be a strictly stationary sequence of
linearly positive quadrant dependent random variables and

P∞
i=−∞ |ai| <

∞. In this paper, we prove the precise asymptotics in the law of iterated
logarithm for the moment convergence of moving-average process of the
form Xk =

P∞
i=−∞ ai+kεi, k ≥ 1.

1. Introduction

We assume that {εi : −∞ < i < ∞} is a doubly infinite sequence of identi-
cally distributed variables. Let {ai : −∞ < i < ∞} be an absolutely summable
sequence of real numbers and Xk =

∑∞
i=−∞ ai+kεi, k ≥ 1. Set Sn =

∑n
k=1 Xk,

also let log y = log(y ∨ e), log log y = log log(y ∨ ee) for all y > 0.
When {εi : −∞ < i < ∞} is a sequence of independent random variables,

many limiting results have been obtained for moving-average process {Xk :
k ≥ 1}. For example, Burton and Dehling [1] have obtained a large deviation
principle for {Xk : k ≥ 1} assuming E exp tε1 < ∞ for all t, Ibragimov [4] has
established the central limit theorem for {Xk : k ≥ 1}, Li et al. [7] derived
convergence rates of moderate deviations and the precise asymptotics in the
law of the iterated logarithm.

On the other hand, Gut and Spǎtaru [3] proved the precise asymptotics of
i.i.d random variables. One of their results is as follows.

Theorem A. Suppose that {Yk : k ≥ 1} is a sequence of i.i.d random variables
with EY1 = 0 and EY 2

1 = σ2 < ∞. Then

lim
ε↘0

ε2
∞∑

n=1

1
n log n

P (|
n∑

k=1

Yk| ≥ ε
√

n log log n) = σ2.
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Chow [2] discussed the complete moment convergence of i.i.d random vari-
ables. He got the following result:

Theorem B. Let {Y, Yk : k ≥ 1} be a sequence of i.i.d random variables with
EY1 = 0. Suppose that p ≥ 1, α > 1

2 , pα > 1, E{|Y |p + |Y | log(1 + |Y |)} < ∞.
Then for any ε > 0, we have

∞∑
n=1

npα−2−αE{max
j≤n

|
j∑

k=1

Yk| − εnα}+ < ∞.

In this note, we show that the precise asymptotics for the moment conver-
gence holds for moving-average process when {εi : −∞ < i < ∞} is a strictly
stationary linear positive quadrant dependent sequence. First, we shall give
the definition of linear positive quadrant dependent sequence.

Two random variables X and Y are said to be positive quadrant dependent
(PQD) if P (X > x, Y > y) ≥ P (X > x)P (Y > y) for all x, y ∈ R. This
notation was first introduced by Lehmann [6], another concept which is stronger
than PQD was due to Newman [9]: a sequence {εi : −∞ < i < ∞} is said to
be linear positive quadrant dependent (LPQD) if for any disjoint finite subsets
A,B ⊂ {. . . ,−2,−1, 0, 1, 2, . . .} and any positive real numbers rj ,∑

i∈A

riεi and
∑

j∈B

rjεj are PQD.

2. Main result

Throughout this paper, let {εi : −∞ < i < ∞} be a sequence of strictly
stationary linear positive quadrant dependent random variables with Eεi = 0,
0 < Eε2

i < ∞, and set 0 < σ2 = Eε2
1 +2

∑∞
k=2 Eε1εk < ∞ unless it is specially

mentioned. Now we state our result as follows.

Theorem 2.1. Assume
∞∑

i=n+1

Eε1εi = O(n−ρ) for some ρ > 0,

and
E|εi|s < ∞ for some s > 2.

Then for −1 < b < −1/2, we have

lim
ε↘0

ε2(b+1)
∞∑

n=1

(log log n)b

n
3
2 log n

E{|Sn| − ε
√

2n log log n}+ =
2−b−1

(b + 1)(2b + 3)
E|Z|2b+3,

where Z has a normal distribution with mean 0 and variance τ2 =σ2(
∑∞

i=−∞ ai)2.

Remark 2.1. Let ai+k = 1, i = k; ai+k = 0, i 6= k, 1 ≤ k ≤ n. Then Xk =
εk, Sn =

∑n
k=1 εk. Thus above result holds under some suitable conditions

when {Xi : i ≥ 1} is a sequence of strictly stationary linear positive quadrant
dependent random variables.
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The following example comes from Li and Wang [8].

Remark 2.2. A finite family of random variables {Xi : 1 ≤ i ≤ n} is said to
be positively associated (PA) if for every pair of disjoint subsets A and B of
{1, 2, . . .},

Cov{f(Xi : i ∈ A), g(Xj ; j ∈ B)} ≥ 0,

whenever f and g are coordinatewise increasing and the covariance exists. A
PA sequence is obviously a LPQD sequence, the following example shows that
LPQD does not imply PA: Consider three discrete random variables with joint
density p(x, y, z) := P (X = x, Y = y, Z = z).

p(2, 2, 1) = p(3, 2, 1) = p(2, 3, 1) = p(3, 3, 1) = p(1, 1, 2)

= p(2, 1, 2) = p(3, 1, 2) = p(1, 2, 2) = p(1, 3, 2) =
1
17

and

p(1, 1, 1) = p(3, 3, 2) =
4
17

.

A lengthy verification shows that {X, Y, Z} is LPQD. But, {X,Y, Z} is not PA
since P (X > 1, Y > 1, Z > 1) = 4

17 < P (X > 1, Y > 1)P (Z > 1) = 72
289 .

3. Some lemmas

First, we give some lemmas which will be used in the proofs. Lemma 3.1
and Lemma 3.2 are from Burton and Dehling [1], Kim [5] respectively.

Lemma 3.1. Let
∑∞

i=−∞ ai be an absolutely convergent series of real numbers
with a =

∑∞
i=−∞ ai and k ≥ 1. Then

lim
n→∞

1
n

∞∑

i=−∞

∣∣∣∣
i+n∑

j=i+1

aj

∣∣∣∣
k

= |a|k.

Lemma 3.2. Let {εi : −∞ < i < ∞} be a sequence of strictly stationary linear
positive quadrant dependent random variables with Eεi = 0, 0 < Eε2

i < ∞, and
set 0 < σ2 = Eε2

1 + 2
∑∞

k=2 Eε1εk < ∞. Assume
∞∑

i=n+1

Eε1εi = O(n−ρ) for some ρ > 0,

and
E|εi|s < ∞ for some s > 2.

Then the linear process {Xk} fulfills the CLT, that is,

Sn

τ
√

n

D−→ N(0, 1), where τ = σ

∞∑

i=−∞
ai.

Throughout the sequel, N represent standard normal variable. C will denote
a positive constant although its value may change from one appearance to the
next and let [x] indicate the maximum integer not larger than x.
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4. Proof of Theorem 2.1

Without loss of generality, we assume τ = 1 in this section. Let A(ε) =

exp
{

exp{M
ε2 }

}
, M > 1. Our main result will be proved via the following

propositions.

Proposition 4.1. For any b > −1, we have

lim
ε↘0

ε2(b+1)
∞∑

n=1

(log log n)b

n log n
E{|N |−ε

√
2 log log n}+ =

2−b−1

(b + 1)(2b + 3)
E|N |2b+3.

Proof. By the variable change, we have

lim
ε↘0

ε2(b+1)
∞∑

n=1

(log log n)b

n log n
E{|N | − ε

√
2 log log n}+

= lim
ε↘0

ε2(b+1)
∞∑

n=1

(log log n)b

n log n

∫ ∞

ε
√

2 log log n

P (|N | ≥ x)dx

= lim
ε↘0

ε2(b+1)

∫ ∞

ee

(log log t)b

t log t

∫ ∞

ε
√

2 log log t

P (|N | ≥ x)dxdt

= lim
ε↘0

2−b

∫ ∞

ε
√

2

y2b+1

∫ ∞

y

P (|N | ≥ x)dxdy

= lim
ε↘0

2−b

2(b + 1)

∫ ∞

ε
√

2

P (|N | ≥ x)(x2b+2 − ε2b+2 · 2b+1)dx

= lim
ε↘0

2−b

2(b + 1)

∫ ∞

ε
√

2

x2b+2P (|N | ≥ x)dx

=
2−b−1

(b + 1)(2b + 3)
E|N |2b+3.

Thus the proposition is now proved. ¤

Proposition 4.2. For any b > −1, we have

lim
ε↘0

ε2(b+1)
∑

n≤A(ε)

(log log n)b

n
3
2 log n

∣∣∣∣E{|Sn| − ε
√

2n log log n}+ −
√

nE{|N | − ε
√

2 log log n}+
∣∣∣∣ = 0.

Proof. Denote

4n = sup
x

∣∣∣∣P (
|Sn|√

n
≥ x)− P (|N | ≥ x)

∣∣∣∣,

it follows from Lemma 3.2 that 4n → 0 as n →∞. Then

∑

n≤A(ε)

(log log n)b

n
3
2 log n

∣∣∣∣E{|Sn| − ε
√

2n log log n}+ −
√

nE{|N | − ε
√

2 log log n}+
∣∣∣∣
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≤ ∑

n≤A(ε)

(log log n)b

n log n
×

∫ ∞

0

∣∣∣∣P (
|Sn|√

n
≥ ε

√
2 log log n + x)− P (|N | ≥ ε

√
2 log log n + x)

∣∣∣∣dx

≤
∑

n≤A(ε)

(log log n)b

n log n
(4n1 +4n2) (say),

where

4n1 =
∫ 1√

4n

0

∣∣∣∣P (
|Sn|√

n
≥ ε

√
2 log log n + x)− P (|N | ≥ ε

√
2 log log n + x)

∣∣∣∣dx,

4n2 =
∫ ∞

1√
4n

∣∣∣∣P (
|Sn|√

n
≥ ε

√
2 log log n + x)− P (|N | ≥ ε

√
2 log log n + x)

∣∣∣∣dx.

It is easy to obtain

4n1 ≤
√
4n → 0 as n →∞.

Next, observe that
n∑

k=1

Xk =
∞∑

i=−∞

n∑

k=1

ak+iεi.

Set ani =
∑n

k=1 ak+i. Then
n∑

k=1

Xk =
∞∑

i=−∞
aniεi =

∞∑

i=−∞
Yi (say).

From Lemma 3.1, we can assume, without loss of generality, that
∞∑

i=−∞
|ani| ≤ n, n ≥ 1 and

∞∑

i=−∞
|ai| ≤ 1.

And then, by Lemma 3.1 and the stationarity we get

(1.1)

Var(Sn) = Eε2
1

∞∑

i=−∞
a2

ni + 2
∞∑

i=−∞

∞∑

j=i+1

anianjEεiεj

≤ nCEε2
1 + 2

∞∑

i=−∞

∞∑

k=1

anian k+iEε1εk+1

≤ nCEε2
1 +

∞∑

i=−∞

∞∑

k=1

(a2
ni + a2

n k+i)Eε1εk+1

≤ nCEε2
1 +

∞∑

k=1

Eε1εk+1

∞∑

i=−∞
a2

ni +
∞∑

k=1

Eε1εk+1

∞∑

i=−∞
a2

n k+i

≤ Cn.

Thus, by virtues of Markov’s inequality, we have

4n2 ≤
∫ ∞

1√
4n

C + 1
(ε
√

log log n + x)2
dx ≤ (C + 1)

√
4n.
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Denote 4′
n = 4n1 +4n2 . It follows that

1
(log log m)b+1

m∑
n=1

4′
n(log log n)b

n log n
→ 0 as m →∞.

We have

lim
ε↘0

ε2(b+1)
∑

n≤A(ε)

(log log n)b

n
3
2 log n

∣∣∣∣E{|Sn| − ε
√

2n log log n}+ −
√

nE{|N | − ε
√

2 log log n}+
∣∣∣∣

≤ lim
ε↘0

ε2(b+1)
∑

n≤A(ε)

(log log n)b

n log n
4′

n

= lim
ε↘0

M b+1 1
(log log[A(ε)])b+1

∑

n≤A(ε)

4′
n

n log n
(log log n)b → 0.

Hence, the proposition holds. ¤

Proposition 4.3. Uniformly for 0 < ε < 1√
2
, we have

lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
3
2 log n

∣∣∣∣E{|Sn| − ε
√

2n log log n}+ −
√

nE{|N | − ε
√

2 log log n}+
∣∣∣∣ = 0.

Proof. It is sufficient to show

(1.2) lim
M−→∞

ε2(b+1)
∑

n>A(ε)

(log log n)b

n log n
E{|N | − ε

√
2 log log n}+

∣∣∣∣ = 0

uniformly with respect to all sufficient small 0 < ε < 1√
2
, and

(1.3) lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
3
2 log n

E{|Sn| − ε
√

2n log log n}+ = 0.

Note that A(ε)− 1 ≥
√

A(ε) for M > 1 and 0 < ε < 1√
2
. Thus

ε2(b+1)
∑

n>A(ε)

(log log n)b

n log n
E{|N | − ε

√
2 log log n}+

≤ ε2(b+1)

∫ ∞

A(ε)−1

(log log y)b

y log y

∫ ∞

ε
√

log log y

P{|N | ≥ x}dxdy

≤ ε2(b+1)

∫ ∞
√

A(ε)

(log log y)b

y log y

∫ ∞

ε
√

log log y

P{|N | ≥ x}dxdy
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= 2
∫ ∞
√

M−ε2 log 2

t2b+1

∫ ∞

t

P{|N | ≥ x}dxdt

≤ 2
∫ ∞
√

M− 1
2 log 2

t2b+1

∫ ∞

t

P{|N | ≥ x}dtdx

≤ 2
∫ ∞
√

M− 1
2 log 2

P{|N | ≥ x}
∫ x

√
M− 1

2 log 2

t2b+1dtdx

≤ C

∫ ∞
√

M− 1
2 log 2

x2b+2P{|N | ≥ x}dx −→ 0 as M →∞.

Then (1.2) is proved.
Now we turn to prove (1.3). Notice that Eε2

1 < ∞, which coupled with
(1.1), it follows that, for −1 < b < −1/2

lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
3
2 log n

E{|Sn| − ε
√

2n log log n}+

= lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
3
2 log n

∫ ∞

ε
√

2n log log n

P

(∣∣∣∣
∞∑

i=−∞
aniεi

∣∣∣∣ ≥ x

)
dx

≤ lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
3
2 log n

∫ ∞

ε
√

2n log log n

Cn

x2
dx

≤ lim
M−→∞

lim sup
ε↘0

ε2(b+1)
∑

n>A(ε)

(log log n)b

n
1
2 log n

(ε
√

2n log log n)−1

≤ lim
M−→∞

lim sup
ε↘0

ε2b+1[log log A(ε)]b+
1
2

≤ lim
M−→∞

M b+ 1
2 = 0.

Then, we complete the proof of this proposition. ¤

Our main result now follows from the propositions.
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