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On the Almost Sure Convergence of Weighted Sums
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Let { X, X, n=1} be iid. random variables with mean zero and { @ ,;, 1 <i<#,n=>1} a tiangular array

of constants. in this paper we give sufficient conditions on X and { @ ,,;} such that Zla X ; converges to

zero almostly surely.
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1. Introduction

Let {X,X,n=1} be

identically distributed(iid.) random variables

independent and

with mean zero and {a,, 1<i<n,2=1} a

triangular array of constants. Chowm, Chow
and Lai,” and Thrum® have obtained the
following result on almost sure convergence
for the cases p=2, 1<p<2 and p>2,

respectively.

Theorem 1.1.
Let { X,X, n=1} be iid. random variables
with EX=0 and FEX|’(o for some p=1.

Let {a,;,1<i<mn,n=1)} be a triangular array

of constants satisfying
n
E}az,”:O(—nlﬁ;). 1)

n
Then Zla #X—0 almost surely(a.s.).
&

In this paper, we prove Theorem 1.1 for
the case 1<{p<2 under the weaker condition
than (1).

Throughout this paper C>( stands for a
constant which may be different in various

places.
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2. Main Result

To prove our main result, we need the
following lemma which is a generalization of
Lemma 6 in Choi and Sung.”

Lemma 2.1.
Let {X,n=1} be
variables with EX,=0 and sup ,|X,/<C

independent random

for some constant C>0. Let
{ @, 1<i<n,n=1) be a trangular array of
constants such that

> dhi= 0(—L) @
i=1 n

for some a@>0. Then

?;‘la #X—0 as.

Proof. From an inequality

e"S1+x+%x2e"" for all xR, we have

Eexp(ta wX) <1+E(5 £a%Xtexp(ta JIX))]
<1+ CtzaZ,,iexp(C-n‘{ﬂz‘)
< exp[Ctzaz,,,»exp(C;*f,ﬁ )]

for any t>0. Using the independence of X,,

we have

Eexp(tg'_'.l anX)= l_l:IlEeXD(ta #iX 1)
ct
nﬂ

Let >0 be given. By putting ¢=2logn/e,
we obtain

i P(z;nla,,,'X,) < ni::le“teEexp(tﬁ a X))

=1
< 2 exp[—te+C—t2— exp(C—2» ar/2 )]

n=1

X

<C 21 exp(—2log n) o,

By the Borel-Cantelli lemma, we have

n
limsup ;e _Zla X0 a.s.
b=

By replacing X, by —X, from the above

statement we obtain
. . L
liminf , o Zla X220 a.s.
by
Thus the conclusion follows.

Now we state and prove our main result.

Theorem 2.2.
Let { X, X, n=1} be iid. random variables

with EX=0 and EX|’{o for
1< p=2. Let {a,,1<i<n,n=1} be a

triangular array of constants such that

some

z la 7= n—lag), (3)

Then

n

gla X0 as.

Proof. Let

constant M such that
Define

e>0 be given and choose a

EIXIPI(X1> M)<e.

X/ =X X]<M) —-EXKIXI<M),
X =XIX>M —EXKIXI>M).

Then EX;/=0 and X, are uniformly
bounded by 2M. Also we have by (3) that
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Hence, by Lemma 21 with a:%—— if
1<{p<2, a=1 if p=2, we have
n
Zlam-X,-'HO a.s. (4)

On the other hand, by the Holder inequality,
the strong law of large numbers and C,-

inequality,

n ”n n
|2 anX 1SCE la ) YOS X1
1= = =

1/p

1 z ZIIX,"ID
cebmEpn o E0
—C(BX,"1)"< Qe as.

This result and 4) imply

? .
1im Sup ,-rcol Zla,x,{scze ¢ as. The conclu- sion
~

now follows, since &>0 is arbitrary.

Remark.

Theorem 2.2 is a generalization of Theorem
1.1 for the case 1<{p<2, since the condition

(1) of Theorem 1.1 implies the condition (3) of
Theorem 2.2.
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