• Title/Summary/Keyword: Stability Control

검색결과 6,806건 처리시간 0.03초

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석 (Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis)

  • 조현철;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권1호
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

일반적인 플랜트에 대한 시간지연을 이용한 제어기법의 안정성 해석 (Stability Analysis of Time Delay Controller for General Plants)

  • 권오석;장평훈;정제형
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1035-1046
    • /
    • 2002
  • Time Delay Control(TDC) is a robust nonlinear control scheme using Time Delay Estimation(TDE) and also has a simple structure. To apply TDC to a real system, we must design Time Delay Controller to guarantee stability. The earlier research stated sufficient stability condition of TDC for general plants. In that research, it was assumed that time delay is infinitely small. But, it is impossible to implement infinitely small time delay in a real system. So, in this research we propose a new sufficient stability condition of TDC for general plants with finite time delay. And the simulation results indicate that the previous sufficient stability condition does not work even for small time delay, while our proposed condition works well.

Power System Sensitivity Analysis for Probabilistic Small Signal Stability Assessment in a Deregulated Environment

  • Dong Zhao Yang;Pang Chee Khiang;Zhang Pei
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.355-362
    • /
    • 2005
  • Deregulations and market practices in power industry have brought great challenges to the system planning area. In particular, they introduce a variety of uncertainties to system planning. New techniques are required to cope with such uncertainties. As a promising approach, probabilistic methods are attracting more and more attentions by system planners. In small signal stability analysis, generation control parameters play an important role in determining the stability margin. The objective of this paper is to investigate power system state matrix sensitivity characteristics with respect to system parameter uncertainties with analytical and numerical approaches and to identify those parameters have great impact on system eigenvalues, therefore, the system stability properties. Those identified parameter variations need to be investigated with priority. The results can be used to help Regional Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform planning studies under the open access environment.

시변 지연시간에 대한 네트워크 제어 시스템의 새로운 안정조건 (New Stability Conditions for Networked Control System with Time-Varying Delay Time)

  • 한형석;이달호
    • 한국항행학회논문지
    • /
    • 제17권6호
    • /
    • pp.679-686
    • /
    • 2013
  • 본 논문에서는 데이터 통신을 이용하는 네트워크 제어 시스템에서 데이터 전송 지연에 의한 시스템 안정성 조건을 리아프노프 이론을 이용하여 새로이 유도하였다. 제안된 안정조건은 기존의 복잡한 계산에 의한 결과에 비하여 매우 간단한 형태이며 쉽게 계산될 수 있다. 또한, 기존에 연구된 결과들을 포함하여 적용될 수 있는 조건임을 보였다. 시뮬레이션을 통하여 기존의 결과에 비해 성능 면에서 우수하고 안정성 판단에 있어 덜 제한적임을 확인하였다.

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Direct Gradient Descent Control and Sontag's Formula on Asymptotic Stability of General Nonlinear Control System

  • Naiborhu J.;Nababan S. M.;Saragih R.;Pranoto I.
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권2호
    • /
    • pp.244-251
    • /
    • 2005
  • In this paper, we study the problem of stabilizing a general nonlinear control system by means of gradient descent control method which is a dynamic feedback control law. In this method, the general nonlinear control system can be considered as an affine nonlinear control systems. Then by using Sontag's formula we investigate the stability (asymptotic) of the general nonlinear control system.

Robust Stability Condition and Analysis on Steady-State Tracking Errors of Repetitive Control Systems

  • Doh, Tae-Yong;Ryoo, Jung-Rae
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.960-967
    • /
    • 2008
  • This paper shows that design of a robustly stable repetitive control system is equivalent to that of a feedback control system for an uncertain linear time-invariant system satisfying the well-known robust performance condition. Once a feedback controller is designed to satisfy the robust performance condition, the feedback controller and the repetitive controller using the performance weighting function robustly stabilizes the repetitive control system. It is also shown that we can obtain a steady-state tracking error described in a simple form without time-delay element if the robust stability condition is satisfied for the repetitive control system. Moreover, using this result, a sufficient condition is provided, which ensures that the least upper bound of the steady-state tracking error generated by the repetitive control system is less than or equal to the least upper bound of the steady-state tracking error only by the feedback system.

비병치 유연계의 시간지연 이산제어에서 한스텝선행 미분제어기의 특성 (Characteristics of One Step Advanced Discrete Time D-Control with Time Delay in Noncolocated Flexible System)

  • 강민식
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1678-1685
    • /
    • 1993
  • This paper considers a time delay control of noncolocated flexible mechanical systems in discrete time domain. A stability criterion suggested in the previous paper is,extended in the consideration of infinite mode property of flexible systems and finite control sampling frequency. Based on the stability criterion, the one step advanced discrete time derivative control is suggested, which can stabilize infinite number of modes of a flexible system. The sensitivity analysis shows the robustness of the one step advanced control to the system parameter uncertainties and time delay errors. Application to a simply supported beam verifies the extended stability criterion and the effectiveness of the one step advanced D-control.

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.