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Power System Sensitivity Analysis for Probabilistic Small Signal
Stability Assessment in a Deregulated Environment

Zhao Yang Dong, Chee Khiang Pang, and Pei Zhang

Abstract: Deregulations and market practices in power industry have brought great challenges
to the system planning area. In particular, they introduce a variety of uncertainties to system
planning. New techniques are required to cope with such uncertainties. As a promising
approach, probabilistic methods are attracting more and more attentions by system planners. In
small signal stability analysis, generation control parameters play an important role in
determining the stability margin. The objective of this paper is to investigate power system
state matrix sensitivity characteristics with respect to system parameter uncertainties with
analytical and numerical approaches and to identify those parameters have great impact on
system eigenvalues, therefore, the system stability properties. Those identified parameter
variations need to be investigated with priority. The results can be used to help Regional
Transmission Organizations (RTOs) and Independent System Operators (ISOs) perform
planning studies under the open access environment.
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power system modeling, eigenvalue analysis, open access and electricity market.

1. INTRODUCTION

Power systems are experiencing more and more
uncertainties  especially under a  deregulated
environment. The system uncertainty may come from
various sources but the main contribution is from
uncertainties in system parameters and forecasted
loads. Because of deregulation, in many cases the ISO
or ITO planners have no access to Independent Power
Producer (IPP) facilities, and therefore can not
perform filed test in order to measure the real system
parameters. Consequently uncertainties are inevitably
introduced into the ISO or ITO’s planning process.
This has resulted in challenges for system planners in
an open assess electricity market. In order to have a
comprehensive picture of the system stability in
planning, probabilistic stability assessment is
attracting more and more attention over the traditional
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deterministic approach. Sensitivity analysis is the first
step for probabilistic small signal stability studies.
Sensitivity analysis has been investigated in various
aspects in [1-7] as will be detailed in Section II.
However, these previous work did not investigate the
computational efficiency of analytical and numerical
approaches in sensitivity computation as will be
discussed in this paper.

After comparing the results of both approaches, the
paper proposes guidelines of selecting the parameter
perturbation sizes in sensitivity analysis. The paper
also identifies the parameters that have great impact
on system stability. It implies that, according to
sensitivity analysis results, the planners need to model
those parameters as random variables when
performing small signal stability analysis. Given the
fact that a power system is a nonlinear, complex and
interactive large scale system, the parametric
sensitivity to the system state matrix is very complex.
Sensitivity of some of the parameters that have direct
entry to the system state matrix can be computed
analytically by studying their contribution in the state
matrix; however, for those parameters which do not
have direct entry to the state matrix, e.g. active power
components of load, sensitivity computation can be
very complex.

This paper preseats the techniques of computing the
sensitivity matrix of the critical system eigenvalues to
non-deterministic random variables of the system.
Both analytical and numerical methods are
investigated and compared. The paper is organized as
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follows: we first introduce the eigenvalue sensitivity
to non-deterministic parameters; then present the
techniques of calculating such sensitivities for
parameters such as exciter gains; Case studies based
on New England system is presented to further justify
the techniques.

2. SYSTEM STABILITY AND SENSITIVITY
ANALYSIS

Small signal stability is the ability of the power
system to maintain synchronism under disturbances.
To investigate the small signal stability of a power
system, we need to model the dynamic components
(e.g. generators) and their control systems (such as
excitation control system, and speed governor
systems) in detail. The accuracy of power system
stability analysis depends on the accuracy of the
models used. Using of more accurate models could
result in increases of overall power system transfer
capability and associated economic benefits. Under
open access environment, the planners may not be able
to obtain this information accurately as they used to be.
It is therefore important to attempt mathematically
modeling and analyzing these parameters probabilistic-
cally; therefore, the planner can gain a better
understanding of the system stability margin.

A complex pattern of oscillations can result
proceeding system disturbances; and linear, time-
invariant state-space models are widely accepted ([1-
9]) as a useful means of studying perturbations of the
system state variable from the nominal values at a
specific operating point [2]. Sensitivity analysis is
then typically undertaken by examining the change in
the system state matrix, or the eigenvalue sensitivity,
for a variation in the system parameter in question [3].
With the sensitivity analysis results, further
probabilistic stability properties of the power system
can be obtained to assist in system planning,.

Probabilistic eigenvalue analysis of power system
dynamics is often applied with the advantage of
determining the probabilistic distributions of critical
eigenvalues, and hence providing an overall
probability of system dynamic instability [4,5]. The
probabilistic approach to dynamic power system
analysis first occurred in 1978. A 2-machine test
system at a particular load level was used to determine
the eigenvalue probabilities stemming from the
known statistical attributes of variations of system
parameters [S]. Since then, several papers have taken
a probabilistic approach to power system stability
analysis, using larger, multimachine systems [5]. [4]
proposes a hybrid utilization of central moments and
cumulants, in order to ensure the consideration of both
the dependence among the input random variables and
the correction for probabilistic densities of
eigenvalues. :

Probabilistic methods of dynamic power system
analysis have also been extended to the application of
PSS design [5], though this is not the intention of this
paper. In [6], the uncertainty of load level is stressed
as a major area of concern. As such, the system
instability probability calculations are based on the
probabilistic nature of load demand and circuit
breaker operating time. However, this method is only
applied to a one-machine infinite-bus system.

We use the following process for sensitivity and
stability analysis. The first step is to model the power
system properly, [8]. A power system can be modeled
by differential and algebraic equations (DAEs) as
following,

X=F(X,Y,u),

0=G(X,Y,u), W

»
where X is a vector of the state variables, Y is the
vector of algebraic variables and system parameters,
and u is the control input. The DAEs can be linearized
and rearranged at operating points as shown below,

AX = AAX. )

The dynamics of the system can be described by the
linearized differential equation. The stability of the
system is therefore determined by the eigenvalues of
the state matrix A. Based on the small signal stability
theorem and system dynamics, critical eigenvalues of
the system can be identified based on their mode of
oscillations. With these critical eigenvalues of a power
system, the small signal stability properties can be
obtained at the particular equilibrium only. In order to
assess the system small signal stability over a range of
operating points, repeated computation is required so
that the system state matrix and corresponding critical
eigenvalues can be computed at each operating point
to obtain an overall picture of the system small signal
stability property. Given the complexity of a power
system, the total number of possible parameter
variations can be huge, and makes this approach of
computing critical eigenvalues computationally
inefficient and even impractical in some cases. This
leads to the investigation of probabilistic small signal
stability study.

If the system parameter variations can be described
by probabilistic density functions, the probabilistic
approach can be used to find the probability of the
system eigenvalues remain in the left half complex
plane. In order to do so, it is necessary to compute the
sensitivity of the eigenvalue to the system parameters
which are subject to variation following certain
probabilistic density functions [1,7].

When a power system is subject to small signal
disturbances and perturbations, the state matrix A
contains functions of non-deterministic variables. As
such, these random variables will cause eigenvalues of
A to be non-deterministic. After identifying the
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critical eigenvalues the sensitivities of the eigenvalues
to system parameters forms the sensitivity matrix, [1-7].

3. ANALYTICAL METHOD

In this section, the eigenvalues’ sensitivities to non-
deterministic system parameters will be derived from
the left eigenvector w; and right eigenvector v; of the
same eigenvalue A; of the state matrix A. We have

Av; =4 v, 3)
wi'A =hwi'. )

The right eigenvectors v; are also known as the
mode shapes of the system and the left eigenvectors
are actually the right eigenvectors of AT [9]. For large
scale power systems, the eigenvalues A; are distinct.
Taking partial derivative of equation (3) with respect
to non-deterministic system parameter K;:

OA Ov; ov; 04
vitA—L=4—! Lv,. (5)

K, ' oK " K +aK !
j j j j

Now taking dot product of each term with the lett
eigenvector w;':

W oA WA
K; K ;
(6)
ov. Y8
=wiTﬂ7-—’+wl~Tiv,~.
K, ' K,
. ov.
Since wiTA?v—’=—’wl-T/1i we have:
6Kj aKj
P w"TaaTAV"
Z’i - - J (7)
aK] Wi .Vl
or in matrix form
AA =S-AT", (8)

where AT" = [AK]], AA = [AX;] and § is the eigenvalue
sensitivity matrix. )

In order to evaluate the sensitivity matrix of the
system with respect to its non-deterministic
parameters, the partial derivative of the matrix JA/0K;
will have to be calculated first. The base values of K;
are obtained from conventional Newton-Raphson load
flow solutions.

If the non-deterministic system parameters are
states of the state matrix A, then the matrix 0A/0K;
can be obtained from an analytical or a direct
approximation method as shown in the sequel. This
approach is made possible as the matrix A can be
expressed explicitly in terms of the state variables,
hence the required system parameters.

However, if the non-deterministic parameters are
not states of the system, an analytical solution though
possible is proven to be computational intensive. As
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such, a partial finite difference approach is

recommended and used.

3.1. Analytical method for control parameter Ka

If the required perturbed parameters appear
explicitly in state matrix A (e.g. IEEE type 1 exciter —
see Fig. 1 — voltage regulator gain K,), 0A/0K, can be
obtained by direct differentiation of elements in A, i.e. :

oA &
—=—ta}, ©)
oK, oK,

where g;; are entries in A. The sensitivity of the state
matrix to the exciter voltage regulator gain Ka is
obtained by (10) — (11).

1 1
_|=—= 000
f o] | O
AV ex1 . N o o T A ]
o o e [
M| |70 TP KPT0 kir0 | arg)
o 1 1 AV(i)
AVexB» 0 _—YE ;(z_) 6%3
R F F AE(’)
0 0 , g0 L
| AEf | 0 L _KE +Sg
R _
[ O (i)
Vgx ng
Vg TP AV
oo . (10)
vl
00 &
— 0 0 .
o 1 S
w0 | T KPnY kTP (1)
A
Vs Saturator
Vg 1 K, K,
->1+STR 1+s7T, 14T,
input Regulator Voltage Reguiator Exciter

sK .

1+5T, ¢

Stabilizing Compensator

Fig. 1. Block diagram of the IEEE type 1 exciter.

Ko
L+ 5T,

Fig. 2. Block diagram of speed governor system.
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3.2. Analytical method for speed governor system
gain KTG

Normally speed governor systems have slow
responses and do not significantly affect local modes
with frequencies greater than 1 Hz. However, they
may have negative damping effects on interarea mode
oscillations in an interconnected power system. A
simple governor model is used in this paper for
sensitivity analysis [8,10] — see Fig. 2. The dynamic
equations of a typical speed governor system installed
at the i-th generator are given in (12)..

=1 0
TrG4 0
¢ _| Krg2 a1 A
AXr Trgs  Trgs 0 X1
0 Krgs -1
Tres  TrGe 1
_ Krgi (12)
0 0 TrG4
+0 0]AVg+ 0 |Aow,
0 0 0

where let AXr=[AV,y; AV, AV,s]' and AVg =
[AV, AVy]T. The interactions between the synchronous
machines and the governor system have to be
considered as in (13).

Ang(i): 0 0 (-Krgaiy  (-Krgs3my Ang(i)(]?’)

2H(i) 2H(i)

Similar to that of the excitation system parameters,
the speed governor system gains Krg;, Krg, and
Krg3’s individual contribution to the state matrix
sensitivity are given in (14)—(18).

"0 0 0]
o4 7= 0 (14)
iy, |
0 00
oA 0O 0 O
=0 0 o (15)
K763 0 1
L Tree
-1
TrG4 .
A
a(i) =/ 0 (16)
K76 0
aA en
= -1 (17)
K162 LO 0 2Hg 0
- -
aA vee
P -1 (18)
K163(:) LO 00 2H |

For a governor system, the time constants Trg; may
have some deviation from their rated values over the
time as well. Because these time constants are often
denominators in the state matrix, they may have more
impact than the system gains Krg;. Their contribution
to the partial derivative of the state matrix can be
obtained similar to that of Kyg;.

So far the analytical approach -only applies to
parameters which have direct entry into the system
state matrix such that an analytical form of the
sensitivity can be accurately computed. However,
there are parameters such as the rotor angles and load
powers which do not have a direct entry into the state
matrix but do have impact on the system state matrix.
To find out the analytical form of sensitivity with
respect to such parameters — e.g. OA/OP; is a very
complex task. For a large scale system it may even
becomes impractical to find out an analytical form. A
numerical approach is more appropriate in view of
computational efficiency and practicality. We next
introduce the numerical approach to computing
sensitivity.

4. NUMERICAL METHOD

The relationship of the system parameters to the
system state matrix is very complex. Even though the
impact from system parameters such as load does not
directly appear in the system state matrix, however,
the impact does exist indirectly. It is well known that
when the load changes, the system voltages and
voltage angles will also change to meet the power
flow conditions.

A numerical approach is generally more desirable
due to its simplicity in implementation and ability to
meet the requirement of complex large scale systems.
Based on our studies, we find that 1% perturbation
is a good choice in most cases as parameter changes
that are too large violate local linearity assumptions
and parameter changes that are too small cause high
round-off errors after division.

From the definition of partial derivative:

A AK; +AK;)-AKK))

m
8Kj AK ;50 AKj

(19)

where A(K+AK;) and A(K)) are the eigenvalue of the
system matrix A after and before the parameter
perturbation. Normally, only the critical eigenvalues
need to be evaluated subject to small perturbations.
We have

oA _AK; +8K )~ AK))

oK AK ;

; (20)

if AK; is small when compared to the entries in A.
The numerical approach applies to computing the
sensitivity of eigenvalues with . respect to the
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excitation system gains, governor system gains and
time constants, which have been evaluated
analytically in previous sections.

It is evident that analytical approach may become to
complex for some parameters such as system loads.
However, the numerical approach provides a
convenient way to approximate the analytical
sensitivity results. The amount of perturbation to
perform the numerical approach, however, needs to be
chosen carefully in order to ensure the robustness of
the sensitivity computation. If it is too small, the
system may not be able to respond to such
perturbation numerically; if it is too large the system
may not be able to maintain smooth change of states.
In either case the final results will not be true
approximation to the actual sensitivities. Subsequent
case study of the New England test system will
indicate a suitable choice of perturbations as
acceptable level.

5. CASE STUDY

The New England system — see Fig. 3 - is used to
test the derived algorithms in computing the
eigenvalue sensitivities. Both the numerical and
analytical approaches are applied to compute the
eigenvalue sensitivity factor with respect to the
selected power system parameters.

5.1. Numerical approach v.s. analytical approach

First ' the analytical approach of eigenvalue
sensitivity computation with respect to K, variations
is performed as shown in Table 1. Both analytical and
numerical approaches have been applied to study the
eigenvalue sensitivity based on the New England
system for different perturbation levels as given in
Tables 1-5, which show that a 1% perturbation in
numerical method can produce reasonably good
results compared with the analytical methods. This is
very important for large scale system analysis and for
sensitivity computations with respect to other
parameters not directly appear in the state matrix.

Fig. 3. The new england test system.

359

Table 1. Sensitivity factor of critical eigenvalue to
exciter gain KA of generator at bus 30 using
the analytical approach. ‘

No | Oscillation Mode Sensitivity Factor (x107)
1 -0.3678 +j8.7547 0.00078162184764
2 | -0.4031 +j8.6747 0.01106642351696
3 -0.3139 + j8.4773 -0.00063404657501
4 | -0.2745+)7.4595 0.00022037834264
5 0.0013 +j6.9647 -0.00957289052384
6 | -0.2493 £j6.9965 -0.00513654645813
7 | -0.2507 +j6.3571 -0.00071777018732
8 | -0.2600+;5.9958 -0.00214383955583
9 | -0.2798 +j3.8493 -0.06791209198673

Table 2. Sensitivity factor of critical eigenvalue to
exciter gain K4 of generator at bus 30 using
the numerical approach.

No | Oscillation Mode Sensitivity Factor (x10™)
1 -0.3678 + j8.7547 0.00078163731043
2 -0.4031 + j8.6747 0.01106188979083
3 -0.3139 +j8.4773 -0.00063335882650
4 -0.2745 +j7.4595 0.00022046186654
5 0.0013 +j6.9647 -0.00959517106325
6 -0.2493 + j6.9965 -0.00513931605273
7 -0.2507 £j6.3571 -0.00071194674489
8 -0.2600 + j5.9958 -0.00208513232680
9 -0.2798 +j3.8493 -0.06636688800743

Table 3. Sensitivity analysis errors for different exciter
gain K, perturbation levels.

Error (%) K, | Error (%) K4 Error (%) Ka
No from 5.0 to from 5.0 to from 5.0 to
6.0 5.1 5.01
1 0.008 0.003 0.0004
2 -0.98 -0.09 -0.009
3 -2.10 -0.2 -0.020
4 0.46 0.04 0.004
5 15.41 1.52 0.152
6 0.80 0.08 0.008
7 19.74 1.95 0.194
8 -14.88 -1.45 -0.145
9 -121.60 -11.92 -1.190
Table 4. Comparison of analytical to numerical
approaches in computing the eigenvalue
sensitivities (speed governor gain Krg; at
bus 30, sensitivity values x 107).
Mod. # Numerical Analytical Error
1 -0.000272155 | -0.000272677 | 0.191684%
2 0.016839917 | 0.016877105 | 0.220346%
3 -0.00044598 | -0.000441561 | 1.000776%
4 0.000301912 | 0.000303428 | 0.499824%
5 0.498817537 | 0.498859015 | 0.008315%
6 -0.01390707 | -0.013915327 | 0.059333%
7 0.00113737 0.001136542 | 0.072868%
8 0.070758053 | 0.070710436 | 0.067340%
9 0.043422405 0.043419504 | 0.006681%




360

Table 5. Percentage errors for eigenvalue sensitivity
computation between numerical vs analytical
methods at bus 30 (numerical method uses
1% perturbation).

Kygr | K
0.1917(1.0752

0.22031 1.356

1.0008| 1.205

0.4998(2.3475

0.0083)0.0371

z
o

Ku
0.002
0.041

0.1085
0.0379
0.2327

Kros
0.6984
0.007
0.0087
0.0166
0.0042

Tros | Tros
1.6292
0.997
0.9993
1.0065
0.9841

TG4
0.5102
1.0787
1.4968
0.8038
07114

0.0539
0.8113

0.0593]1.0034
0.0729|0.5967

0.0174
0.1796

0.2743
0.1166

0.9695
0.7947

2.7384
2.2753

0.0673]0.5954
0.0067)0.1604

0.1815
0.0441

0.0649
0.3598

0.7923
0.9286

ORI NN B |W[IN]|—

Tables 6-7 show the complete sensitivity values
with respect to governor time constant 77 and gain
K1 for all generators and all critical modes.

It can be seen that even though the analytical
approach does provide accurate sensitivity factor, but
it carries with very complex numerical analysis and
different analysis has to be done for different system
parameters or even for different systems. Numerical
approach is computationally simple and has been
proven to be accurate enough as comparing with the
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analytical approach. Generally a 1% perturbation is
able to generate acceptable results comparable to that
of the analytical analysis results but saves
significantly analytical time and possibility of errors.
Because of the simplicity of the numerical approach,
it will be used in sensitivity analysis for other
parameters as well with a 1% perturbation.

5.2. The most sensitive parameters and machines

Based on the analytical and more importantly
numerical methods discussed in previous sections, the
eigenvalue sensitivity analysis is performed to all the
system excitation system gains Ky, governor gains
Ky and governor time constant T7g; to find out the
parameters which have the most impact on system
eigenvalue variations, i.e. these parameters with
which the system eigenvalue sensitivities are the
highest. Tables 5-6 are selected complete eigenvalue
sensitivities for all 9 synchronous generators. Tables
7-14 summarize the findings and identify the most
sensitive  parameters, critical eigenvalues and
corresponding generators. By identifying such
parameters and associated machines, the system
operator is able to pay more attention to these
identified sensitive parameters and machines to
manage the system stability more efficiently and
effectively.

Table. 6. Eigenvalue sensitivity analysis of the governor time constant Trge.

I

TTGG at
Machine 30

Trge at
Machine 31

TTGG at
Machine 32

Trge at
Machine 33

T at
Machine 34

TTGG at
Machine 35

TTG6 at
Machine 36

Trge at
Machine 37

Trge at
Machine 38

-1.11551E-06

-3.558E-11

-4.788E-11

6.6291E-08

3.80224E-08

-1.93559E-07

-0.000139367

5.07058E-08

-2.84968E-08

6.46559E-05

-4.0387E-09

-1.18767E-09

-3.71654E-06

-3.09263E-07

4.77072E-09

9.64761E-07

-3.36758E-07

-1.10567E-05

-1.95761E-06

-2.57155E-09

3.168E-11

-0.00016377

-3.88693E-05

1.12878E-07

-1.45484E-05

1.47502E-07

-1.57724E-06

1.76353E-06

-2.59354E-06

-5.21521E-08

-1.55722E-08

-2.07263E-08

-1.72079E-08

-2.90804E-06

-1.818E-11

2.34882E-08

0.003414985

-1.18294E-07

4.4259E-09

-3.76821E-08

1.09418E-05

-1.76852E-07

-4.33723E-06

6.69378E-07

-0.000150108

-8.95896E-05

-8.1947E-07

1.08412E-08

-2.99485E-07

-0.000156474

4.64143E-07

-0.000130285

-2.65358E-08

-5.22308E-05

8.58656E-06

-3.89898E-06

2.06921E-08

-1.86785E-06

-5.44971E-05

3.64671E-09

5.08404E-08

1.65754E-09

-0.000316083

0.000572916

-1.26273E-07

3.49368E-08

-2.40172E-05

-0.000387368

-7.10243E-08

-6.30757E-06

-1.02286E-07

-0.000482093

Clow| | |wn|&=lWwW| N

0.000838442

-1.08889E-06

-3.6804E-08

-9.65502E-05

-0.000242267

-3.66778E-07

-0.000118408

-5.26866E-07

-0.000349147

Table 7. Eigenvalue sensitivity of the governor gain Krgp.

I®

Ktgs at
Machine 30

KTGZ at
Machine 31

KTG2 at
Machine 32

Krar at
Machine 33

Krg, at
Machine 34

Krgr at
Machine 35

Ktg) at
Machine 36

KTGZ at
Machine 37

KTGZ at
Machine 38

—

-0.000219504

2.06935E-06

4.53992E-07

0.001545566

-3.82499E-05

0.002097239

0.170009071

-0.000185777

5.3425E-06

0.006788523

0.000101141

1.16527E-05

0.000753583

0.000157565

-4.18803E-05

-0.001559526

0.001113672

0.00355742

-0.001191229

2.25112E-05

-1.59018E-07

0.181296538

0.069240347

-0.001011621

0.022957771

-0.000533284

0.000290418

0.000103514

0.026501181

0.000309328

2.01391E-05

5.19781E-05

0.000117185

0.003536287

1.79402E-07

4.75415E-06

0.336134994

-0.001874333

-4.24984E-05

3.27926E-05

-0.010366876

0.001057575

0.00768202

-0.001788257

0.03501701

-0.009386866

0.013020627

-6.905E-05

3.94168E-05

0.208190867

-0.003035191

0.114276293

6.4296E-05

0.017539022

0.000899972

0.050480814

-0.000180781

0.001762589

0.066927192

-1.87307E-05

-9.46254E-05

-9.72278E-06

0.034078409

0.055932815

-0.001087897

-0.00017022

0.017075462

0.404146387

0.000330395

0.005577833

0.00010949

0.067435278

Clw|([w[laajw]r|w]N

0.03323575

0.007897174

5.57848E-05

0.037064593

0.138868907

0.000628983

0.043878354

0.000250131

0.04131 6363}
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It is shown in Tables 6 and 7 that Trgs at bus 30 is
the most sensitive one among all Trges at critical
mode 5 (0.003414985); and K7¢; at bus 34 is the most
sensitive one at critical mode 8 (0.404146387).
Similar analysis is performed to all other parameters
at all machines. The results are given in Tables 8-12.

Table 8. Identify the most sensitive eigenvalue to
exciter gain K, at each generator.

‘ Kx
Machine No K, (< 107) Critical Mode No
30 20.06791209198673 9
31 0.34809738436733 7
32 0.32487814171438 9
33 20.14168737887021 3
34 0.43863295050830 g
35 0.26266275761013 1
36 0293535855003 14 9
37 0.25569157094522 2
38 0.34868931208412 9
Maximum 0.43863295050830 (4, 8)

Table 9. Identify the most sensitive eigenvalue to speed
governor gain Krg; at each generator,

: Ko
Machine No ddKm(x107%) | Critical Mode No
30 0.49885901529951 5
31 0.09469911688998 4
32 20.00000534910129 7
3 0.21556520763527 3
34 20.19964981762726 9
35 20.00002071690747 6
36 0.49600058177804 1
37 ~0.00002595289485 5
38 0.09035773666933 7
Maximum 0.49885901529951 (0. 5)

Table 10. Identify the most sensitive eigenvalue to speed
governor gain Krg; at each generator.

‘ Kng
Machine No dMdKrga(x1) Critical Mode No
30 20.00098710467616 5
31 20.04169354401310 g
32 -0.00021299073944 4
33 20.11734670906906 3
34 0.07513066243194 9
35 20.00048199751110 6
36 20.11193931004559 1
37 20.00144899144764 2
38 -0.04415122152392 7
Maximum -0.11734670906906 (33,3)

Table 11. Identify the most sensitive eigenvalue to
speed governor time constant Tygs at each

generator.
. TT(y
Machine No /AT (<1 Critical Mode No
30 -0.58393197169450 5
31 -0.00992954680167 4
32 -0.00000012095101 4
33 -0.02916175607370 3
34 0.7971908080013 1 8
35 -0.00000084238796 9
36 0.07860269814019 )
37 0.00000087982427 5
38 0.03049729669530 9
Maximum 0.7971908080013 1 (34,8)

Table 12. Identify the most sensitive eigenvalue to
speed governor time constant Tygs at each

generator.
: TI‘GS
Machine No dMdTros(x1) Critical Mode No
30 -0,00029901705056 5
31 0.09996306255147 7
32 -0.00000005215206 4
33 0.02636963298285 9
34 0.65079925596713 g
35 0.00000046414332 6
36 0.08358576995736 9
37 0.00000087982427 5
38 0.15184475179912 8
Maximum 0.65079925596713 (34, 8)

From Tables 6-12, we can conclude that (i)
Machine 34 is most sensitive to parameter
uncertainties subject to small signal stability; (ii) the
governor system parameters are most sensitive for
machine 34 to the 8" critical mode of oscillation; (iii)
the governor time constants have the most impact on
eigenvalue sensitivity as compared with other control
system gains in a scale of 10°; therefore more
attention should be paid to these time constants than
gains; (iv) excitation system gain K, has about 10~
times less impact on eigenvalue sensitivity to all buses
as compared with governor time constants; (v)
machines 30 and 33 are also sensitive to parameter
uncertainties, however less than that of machine 34 ;
(vi) the governor system gains have much more
impact on eigenvalue sensitivity than excitation
system gains in an approximately 10 times more.
These observations indicate that the governor gains
and time constants have more impact on eigenvalue
sensitivity than excitation system gains, and therefore
needs more attention to prevent small signal
instability. It also indicates that machine 34 may need
more attention in dispatch and maintenance to avoid
possible small signal instability.

6. CONCLUSIONS

Sensitivity of the system eigenvalues to system
parameters indicates the impact of such parameter to
the system stability. It is preferable to have analytical
approach to compute the eigenvalue sensitivity;
however, the analytical form of sensitivity may be too
complex for realistic computation for some system
parameters and for large scale systems. With case
study and mathematical analysis, the paper concludes
that by proper perturbation level, the numerical
approach, which is simple in algorithm, is able to
produce accurate results as compared with the
accurate analytical approach when computing the
sensitivity factors. In addition, our research also finds
out that the numerical approach can compute all of the
sensitivity factors within one-time run, while the
analytical method has to compute the sensitivity factor
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by each parameter. These findings can reduce the
computational cost significantly for large scale
systems and parameters whose relationship with the
state matrix is complex.

In this paper, the critical eigenvalues’ sensitivity
matrix for non-deterministic power system parameters
including excitation system gains is derived using
analytical and numerical methods. Based on the case
study with the New England system, we find out that
less than 1% perturbation is reasonable for numerical
approach to compute sensitivity factors. Larger
perturbation value may cause significant errors.

The paper also indicates that the eigenvalues are
most sensitive to the changes of governor gains and
time constants. It again proves that the small signal
stability analysis should model governor system.
Since those parameters have significant impact on the
stability margin, the variation of governor parameters
needs to be modeled as random variables in
probabilistic small signal stability analysis.
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