• Title/Summary/Keyword: Squares

Search Result 3,103, Processing Time 0.033 seconds

Asymmetric least squares regression estimation using weighted least squares support vector machine

  • Hwan, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.999-1005
    • /
    • 2011
  • This paper proposes a weighted least squares support vector machine for asymmetric least squares regression. This method achieves nonlinear prediction power, while making no assumption on the underlying probability distributions. The cross validation function is introduced to choose optimal hyperparameters in the procedure. Experimental results are then presented which indicate the performance of the proposed model.

PACKING LATIN SQUARES BY BCL ALGEBRAS

  • LIU, YONGHONG
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.133-139
    • /
    • 2022
  • We offered a new method for constructing Latin squares. We introduce the concept of a standard form via example for Latin squares of order n and we also call it symmetric BCL algebras matrix, and thereby become BCL algebra representations of the picture of Latin squares. Our research shows that some new properties of the Latin squares with BCL algebras are in ℤn.

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.1_2
    • /
    • pp.19-34
    • /
    • 2016
  • In this paper, we present a split least-squares characteristic mixed finite element method(MFEM) to get the approximate solutions of the convection dominated Sobolev equations. First, to manage both convection term and time derivative term efficiently, we apply a least-squares characteristic MFEM to get the system of equations in the primal unknown and the flux unknown. Then, we obtain a split least-squares characteristic MFEM to convert the coupled system in two unknowns derived from the least-squares characteristic MFEM into two uncoupled systems in the unknowns. We theoretically prove that the approximations constructed by the split least-squares characteristic MFEM converge with the optimal order in L2 and H1 normed spaces for the primal unknown and with the optimal order in L2 normed space for the flux unknown. And we provide some numerical results to confirm the validity of our theoretical results.

LMS and LTS-type Alternatives to Classical Principal Component Analysis

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.233-241
    • /
    • 2006
  • Classical principal component analysis (PCA) can be formulated as finding the linear subspace that best accommodates multidimensional data points in the sense that the sum of squared residual distances is minimized. As alternatives to such LS (least squares) fitting approach, we produce LMS (least median of squares) and LTS (least trimmed squares)-type PCA by minimizing the median of squared residual distances and the trimmed sum of squares, in a similar fashion to Rousseeuw (1984)'s alternative approaches to LS linear regression. Proposed methods adopt the data-driven optimization algorithm of Croux and Ruiz-Gazen (1996, 2005) that is conceptually simple and computationally practical. Numerical examples are given.

EFFICIENT ESTIMATION OF THE REGULARIZATION PARAMETERS VIA L-CURVE METHOD FOR TOTAL LEAST SQUARES PROBLEMS

  • Lee, Geunseop
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1557-1571
    • /
    • 2017
  • The L-curve method is a parametric plot of interrelation between the residual norm of the least squares problem and the solution norm. However, the L-curve method may be hard to apply to the total least squares problem due to its no closed form solution of the regularized total least squares problems. Thus the sequence of the solution norm under the fixed regularization parameter and its corresponding residual need to be found with an efficient manner. In this paper, we suggest an efficient algorithm to find the sequence of the solutions and its residual in order to plot the L-curve for the total least squares problems. In the numerical experiments, we present that the proposed algorithm successfully and efficiently plots fairly 'L' like shape for some practical regularized total least squares problems.

Least-Squares Meshfree Method and Integration Error (최소 제곱 무요소법과 적분 오차)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1605-1612
    • /
    • 2001
  • Least-squares meshfree method is presented. Conventional meshfree methods based on the Galerkin formulation suffer from inaccurate numerical integration. Least-squares formulation exhibits rather different integration-related characteristics. It is demonstrated through numerical examples that least-squares formulation is much more robust to integration errors than the Galerkin's. Therefore efficient meshfree methods can be devised by combining very simple integration algorithms and least-squares formulation.

DETECTION OF OUTLIERS IN WEIGHTED LEAST SQUARES REGRESSION

  • Shon, Bang-Yong;Kim, Guk-Boh
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.501-512
    • /
    • 1997
  • In multiple linear regression model we have presupposed assumptions (independence normality variance homogeneity and so on) on error term. When case weights are given because of variance heterogeneity we can estimate efficiently regression parameter using weighted least squares estimator. Unfortunately this estimator is sen-sitive to outliers like ordinary least squares estimator. Thus in this paper we proposed some statistics for detection of outliers in weighted least squares regression.

Limiting Distributions of Trimmed Least Squares Estimators in Unstable AR(1) Models

  • Lee, Sangyeol
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.151-165
    • /
    • 1999
  • This paper considers the trimmed least squares estimator of the autoregression parameter in the unstable AR(1) model: X\ulcorner=ØX\ulcorner+$\varepsilon$\ulcorner, where $\varepsilon$\ulcorner are iid random variables with mean 0 and variance $\sigma$$^2$> 0, and Ø is the real number with │Ø│=1. The trimmed least squares estimator for Ø is defined in analogy of that of Welsh(1987). The limiting distribution of the trimmed least squares estimator is derived under certain regularity conditions.

  • PDF

Orthogonal Latin squares of Choi Seok-Jeong (최석정의 직교라틴방진)

  • Kim, Sung-Sook;Khang, Mee-Kyung
    • Journal for History of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.21-31
    • /
    • 2010
  • A latin square of order n is an $n{\times}n$ array with entries from a set of n numbers arrange in such a way that each number occurs exactly once in each row and exactly once in each column. Two latin squares of the same order are orthogonal latin square if the two latin squares are superimposed, then the $n^2$ cells contain each pair consisting of a number from the first square and a number from the second. In Europe, Orthogonal Latin squares are the mathematical concepts attributed to Euler. However, an Euler square of order nine was already in existence prior to Euler in Korea. It appeared in the monograph Koo-Soo-Ryak written by Choi Seok-Jeong(1646-1715). He construct a magic square by using two orthogonal latin squares for the first time in the world. In this paper, we explain Choi' s orthogonal latin squares and the history of the Orthogonal Latin squares.

Type I projection sum of squares by weighted least squares (가중최소제곱법에 의한 제1종 사영제곱합)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.423-429
    • /
    • 2014
  • This paper discusses a method for getting Type I sums of squares by projections under a two-way fixed-effects model when variances of errors are not equal. The method of weighted least squares is used to estimate the parameters of the assumed model. The model is fitted to the data in a sequential manner by using the model comparison technique. The vector space generated by the model matrix can be composed of orthogonal vector subspaces spanned by submatrices consisting of column vectors related to the parameters. It is discussed how to get the Type I sums of squares by using the projections into the orthogonal vector subspaces.