
J. Appl. Math. & Informatics Vol. 34(2016), No. 1 - 2, pp. 19 - 34
http://dx.doi.org/10.14317/jami.2016.019

A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED

FINITE ELEMENT METHOD FOR THE CONVECTION

DOMINATED SOBOLEV EQUATIONS†

MI RAY OHM AND JUN YONG SHIN∗

Abstract. In this paper, we present a split least-squares characteristic

mixed finite element method(MFEM) to get the approximate solutions of
the convection dominated Sobolev equations. First, to manage both con-
vection term and time derivative term efficiently, we apply a least-squares
characteristic MFEM to get the system of equations in the primal unknown

and the flux unknown. Then, we obtain a split least-squares characteris-
tic MFEM to convert the coupled system in two unknowns derived from
the least-squares characteristic MFEM into two uncoupled systems in the
unknowns. We theoretically prove that the approximations constructed

by the split least-squares characteristic MFEM converge with the optimal
order in L2 and H1 normed spaces for the primal unknown and with the
optimal order in L2 normed space for the flux unknown. And we provide

some numerical results to confirm the validity of our theoretical results.
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1. Introduction

In this paper we consider the following convection dominated Sobolev equa-
tion:

c(x )ut + d(x ) · ∇u−∇ · (a(x )∇ut + b(x )∇u)
= f(x , t), (x , t) ∈ Ω× (0, T ],

u(x , t) = 0, (x , t) ∈ ∂Ω× (0, T ],

u(x , 0) = u0(x ), x ∈ Ω,

(1.1)
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where Ω is a bounded convex domain in Rm with 1 ≤ m ≤ 3 with boundary
∂Ω, c(x ),d(x ), a(x ), b(x ), f(x , t), and u0(x ) are given functions. The Sobolev
equation which represents the flow of fluids through fissured rock, the migration
of the moisture in soil, the physical phenomena of thermodynamics and other
applications as described in [2, 19, 20], is one of most principal partial differen-
tial equations. For the existence and uniqueness results of the solutions of the
equation (1.1), refer to [8].

For the problems with no convection term, mixed finite element methods
[11, 16, 18, 22], least-squares methods [12, 18, 21, 22], and discontinuous Galerkin
methods [14, 15] were used for numerical treatments. In the case that a conven-
tional (least-squares) MFEM is applied, we generally needs to solve the coupled
system of equations in two unknowns, which brings to difficulties in some extent.
So, in [18], a split least-squares mixed finite element method for reaction-diffusion
problems was firstly introduced to solve the uncoupled systems of equations in
the unknowns.

For the partial differential equations with a convection term, a characteristic
(mixed) finite element method is one of the useful methods [1, 3, 4, 5, 6, 7, 10, 13]
because it reflects well the physical character of a convection term and also
it treats efficiently both convection term and time derivative term. Gao and
Rui [9] introduced a split least-squares characteristic MFEM to approximate
the primal unknown u and the flux unknown −a∇u of the equation (1.1) and
obtained the optimal convergence in L2(Ω) norm for the primal unknown and in
H(div,Ω) norm for the flux unknown. And Zhang and Guo [23] introduced a split
least-squares characteristic mixed element method for nonlinear nonstationary
convection-diffusion problem to approximate the primal unknown and the flux
unknown and obtained the optimal convergence in L2(Ω) norm for the primal
unknown and in H(div,Ω) norm for the flux unknown.

In this paper, we apply a split least-squares characteristic characteristic mixed
finite element method (MFEM) to achieve two uncoupled system of equations,
one of which is for approximations to the primal unknown u and the other of
which is for ones to the flux unknown σ = −(a(x )∇ut+b(x )∇u) of the equation
(1.1). And we analyze the optimal order of convergence in L2 and H1 normed
spaces for the approximations. In section 2, we introduce necessary assumptions
and notations, and in section 3, we construct finite element spaces on which
we compose the approximations of two unknowns. In section 4, by adopting a
split least-squares characteristic MFEM, we construct the approximations of the
primal unknown and the unknown flux and establish the convergence of optimal
order in L2 and H1 normed spaces for the primal unknown and the convergence
of optimal order in L2 normed space for the flux unknown. In section 5, we
provide some numerical results to confirm the validity of the theoretical results
obtained in section 4.
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2. Assumption and notations

For an s ≥ 0 and 1 ≤ p ≤ ∞, we denoted by W s,p(Ω) the Sobolev space
endowed with the norm ∥ϕ∥ps,p =

∑
|k |≤s

∫
Ω
|Dkϕ|pdx where k = (k1, k2, · · · , km),

|k | = k1 + k2 + · · ·+ km, D
kϕ = ∂|k|ϕ

∂x
k1
1 ∂x

k2
2 ···∂xkm

m

and ki is a nonnegative integer,

for each i, 1 ≤ i ≤ m. If p = 2, we simply denote Hs(Ω) =W s,2(Ω) and ∥ϕ∥s =
∥ϕ∥s,2. And also in case that s = 0, we simply write ∥ϕ∥. We let Hs(Ω) = {u =

(u1, u2, · · · , um) | ui ∈ Hs(Ω), 1 ≤ i ≤ m} with the norm ∥u∥2s =
m∑
i=1

∥ui∥2s. Let

V = H1
0 (Ω) and W = H(div,Ω).

If ϕ(x, t) belongs to a Sobolev space equipped with a norm ∥ · ∥X for each t,
then we let

∥ϕ(x, t)∥pLp(0,t0:X) =

∫ t0

0

∥ϕ(x, t)∥pXdt, for 1 ≤ p <∞,

∥ϕ(x, t)∥L∞(0,t0:X) = ess sup
0≤t≤t0

∥ϕ(x, t)∥X .

In case that t0 = T , we denote Lp(0, T : X) and L∞(0, T : X) by Lp(X) and
L∞(X), respectively. Let Hq,∞(X) = {ϕ(x, t) | ϕ(x, t), ϕt(x, t), · · · , ϕq(x, t) ∈
L∞(X)} for a nonnegative integer q.

We consider the problem (1.1) with the coefficients satisfying the following
assumption:
(A). There exist c∗, c

∗, d∗, a∗, a
∗, b∗, and b∗ such that 0 < c∗ < c(x ) ≤ c∗, 0 <

|d(x )| ≤ d∗, 0 < a∗ < a(x ) ≤ a∗, and 0 < b∗ < b(x ) ≤ b∗, for all x ∈ Ω, where
|d(x )| =

∑m
i=1 d

2
i (x ).

3. Finite element spaces

Before preceding the numerical scheme, we let Eh = {E1, E2, · · · , ENh
} be a

family of regular finite element subdivision of Ω. We let h denote the maximum
of the diameters of the elements of Eh. If m = 2, then Ei is a triangle or a
quadrilateral, and if m = 3, then Ei is a 3-simplex or 3-rectangle. Boundary
elements are allowed to have a curvilinear edge (or a curved surface).

We denote by Vh ×W h the Raviart-Thomas-Nedlec space associated with
Eh. For each triangle (or 3-simplex) element E ∈ Eh, we define Vh(E) = Pk(E),
and W h(E) = Pk(E)m ⊕ (x1, x2, · · · , xm)TPk(E) where Pk(E) is the set of
polynomials of total defree ≤ k difined on E. Now we define the finite element
spaces

Vh = {v ∈ V | v|E ∈ Vh(E), ∀E ∈ Eh},
W h = {w ∈W | w|E ∈W h(E), ∀E ∈ Eh}.

And also in case that E is a rectangle (or a parallelogram), we adopt analogous
modification to construct Vh and W h.



22 M.R. Ohm and J.Y. Shin

Let Ph×Πh : V ×W → Vh×W h denote the Raviart-Thomas [17] projection
which satisfies

(∇ ·w −∇ ·Πhw , χ) = 0, ∀χ ∈ Vh, (3.1)

(v − Phv, χ) = 0, ∀χ ∈ Vh. (3.2)

Then, obviously, (∇ · w , v − Phv) = 0 holds for each v ∈ V and each w ∈ W h

and divΠh = Phdiv is a function fromW onto Vh. It is proved that the following
approximation properties hold [17]:

∥v − Phv∥+ h∥v − Phv∥1 ≤ Khr∥v∥r, ∀v ∈ V ∩Hr(Ω), 1 ≤ r ≤ k + 1, (3.3)

∥w −Πhw∥ ≤ Khr∥w∥r, ∀w ∈ W ∩Hr(Ω), 1 ≤ r ≤ k + 1, (3.4)

∥∇ · (w −Πhw)∥ ≤ Khr∥∇ ·w∥r, ∀w ∈ W ∩Hr(Ω), 0 ≤ r ≤ k + 1. (3.5)

4. Optimal L2 error analysis

Let ψ(x ) =
(
c2(x ) + |d(x )|2

) 1
2

with |d(x )|2 =
m∑
i=1

d2i (x ) and ν = ν(x , t) be

the unit vector in the direction of (d(x ), c(x )). Then, we have

∂u

∂ν
=

c(x )

ψ(x )

∂u

∂t
+

d(x )

ψ(x )
· ∇u.

Hence the problem (1.1) can be written in the form
ψ(x ) ∂u∂ν −∇ · (a(x )∇ut + b(x )∇u) = f(x , t), in Ω× (0, T ],

u(x , t) = 0, on ∂Ω× (0, T ],

u(x , 0) = u0(x ), in Ω.

(4.1)

By introducing the flux term σ = −(a(x )∇ut + b(x )∇u), the problem (4.1) can
be rewritten as follows:{

ψ(x ) ∂u∂ν +∇ · σ = f(x , t), in Ω× (0, T ],

σ + a(x )∇ut + b(x )∇u = 0, in Ω× (0, T ].
(4.2)

For a positive integer N , let ∆t = T/N and tn = n∆t, n = 0, 1, · · · , N. Choosing
t = tn in (4.2) and discretizing it with respect to t by applying the backward
Euler method along ν-characteristic tangent at (x , tn), we get

ψ(x )
∂u

∂ν
(x , tn) ∼= ψ(x )

u(x , tn)− u(x̂ , tn−1)√
|d(x)c(x)∆t|2 + (∆t)2

= c(x )
u(x , tn)− u(x̂ , tn−1)

∆t
,

where x̂ = x − d̃(x )∆t with d̃(x ) = d(x)
c(x) . Therefore we have{

c(x )u
n−ûn−1

∆t +∇ · σn = fn + En
1 ,

σn + a(x )∇un−∇un−1

∆t + b(x )∇un = En
2 ,

(4.3)

where un = u(x , tn), ûn−1 = u(x̂ , tn−1), En
1 = c(x )u

n−ûn−1

∆t − ψ(x ) ∂u∂ν (x , t
n)

and En
2 = a(x )

(
∇un−∇un−1

∆t −∇unt
)
.
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Now let ã(x ) = a(x ) + b(x )∆t. By multiplying the first equation of (4.3) by

c−
1
2∆t and the second equation by (ã)−

1
2∆t, we have the equivalent system of

equations {
c−

1
2 [cun +∆t ∇ · σn − (cûn−1 +∆tfn +∆tEn

1 )] = 0,

(ã)−
1
2 [∆t σn + (ã)∇un − (a∇un−1 +∆tEn

2 )] = 0.
(4.4)

For (v, τ ) ∈ V ×W , we define a least-squares functional J(v, τ ) as follows

J(v, τ ) =∥c− 1
2 [cun +∆t ∇ · σn − (cûn−1 +∆tfn +∆tEn

1 )]∥2

+ ∥(ã)− 1
2 [∆t σn + (ã)∇un − (a∇un−1 +∆tEn

2 )]∥2.
Then the least-squares minimization problem is to find s solution (un,σn) ∈
V ×W such that

J(un,σn) = inf
(v,τ )∈V×W

J(v, τ ).

If we define the bilinear form A on (V ×W )2 by

A(u,w ; v, τ ) =
(
c−1(cu+∆t ∇ ·w), cv +∆t ∇ · τ

)
+
(
ã−1(∆t w + ã∇u),∆t τ + ã∇v

)
, (4.5)

then the weak formulation of the minimization problem becomes as follows: find
(un,σn) ∈ V ×W such that

A(un,σn; v, τ ) =
(
c−1(cûn−1 +∆t fn +∆t En

1 ), cv +∆t ∇ · τ
)

+
(
ã−1(a∇un−1 +∆t En

2 ),∆t τ + ã∇v
)
, ∀ (v, τ ) ∈ V ×W . (4.6)

Based on (4.6), we derive the following least-squares characteristic MFEM scheme:
find (unh,σ

n
h) ∈ Vh ×W h satisfying

A(unh,σ
n
h; vh, τh) =

(
c−1(cûn−1

h +∆tfn), cvh +∆t ∇ · τh

)
+
(
ã−1(a∇un−1

h ),∆t τh + ã∇vh
)
, ∀ (vh, τh) ∈ Vh ×W h. (4.7)

Lemma 4.1. For (v, τ ) ∈ V ×W, we have

A(un,σn; v, τ ) =(cun, v) + (c−1∆t ∇ · σn,∆t ∇ · τ ) + (ã−1∆t σn,∆t τ )

+ (ã∇un,∇v).

Proof. From the definition of the bilinear form (4.5), we have

A(un,σn; v, τ )

=(cun, v) + (un,∆t ∇ · τ ) + (∆t ∇ · σn, v) + (c−1∆t ∇ · σn,∆t ∇ · τ )
+ (ã−1∆t σn,∆t τ ) + (∆t σn,∇v) + (∇un,∆t τ ) + (ã∇un,∇v)

=(cun, v) + (c−1∆t ∇ · σn,∆t ∇ · τ ) + (ã−1∆t σn,∆t τ ) + (ã∇un,∇v).
�
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Letting vh = 0 in (4.7) and applying the definition of the bilinear form A, we
have

(c−1∆t ∇ · σn
h,∆t ∇ · τh) + (ã−1∆t σn

h,∆t τh)

=
(
c−1(cûn−1

h +∆t fn),∆t ∇ · τh

)
+ (ã−1a∇un−1

h ,∆t τh),

which implies that

(∆t)2{(c−1∇ · σn
h,∇ · τh) + (ã−1σn

h, τh)}
=∆t(ûn−1

h ,∇ · τh) + (∆t)2(c−1fn,∇ · τh) + ∆t(ã−1a∇un−1
h , τh).

Since − 1
∆t +

1
∆t ã

−1a = ã−1( a
∆t − ã 1

∆t ) = ã−1(−b), we have

(c−1∇ · σn
h,∇ · τh) + (ã−1σn

h, τh)

=
1

∆t
(ûn−1

h ,∇ · τh) + (c−1fn,∇ · τh) +
1

∆t
(ã−1a∇un−1

h , τh)

=
1

∆t

(
∇(un−1

h − ûn−1
h ), τh

)
+ (c−1fn,∇ · τh)− (ã−1b∇un−1

h , τh).

Letting τh = 0 in (4.7) and applying the definition of the bilinear form A, we
have

(cunh, vh) + (ã∇unh,∇vh) = (cûn−1
h , vh) + ∆t(fn, vh) + (a∇un−1

h ,∇vh).
Finally, we derive a split least-squares characteristic MFEM: find {unh,σn

h} ∈
Vh ×W h satisfying:

(cunh, vh) + (ã∇unh,∇vh) = (cûn−1
h , vh) + ∆t(fn, vh) + (a∇un−1

h ,∇vh), (4.8)

(c−1∇ · σn
h,∇ · τh) + (ã−1σn

h, τh)

=
1

∆t

(
∇(un−1

h − ûn−1
h ), τh

)
+ (c−1fn,∇ · τh)− (ã−1b∇un−1

h , τh). (4.9)

For the error analysis, we define an elliptic projection ũ(x, t) of u(x, t) onto
Vh satisfying{

(a(x)∇(u− ũ)t,∇vh) + (b(x)∇(u− ũ),∇vh) = 0, ∀vh ∈ Vh

(ũ(0), v) = (u0, v), ∀vh ∈ Vh.
(4.10)

Obviously, by the assumption (A), there exists a unique elliptic projection ũ(x, t)
∈ Vh. Now we let η = u− ũ and ξ = uh − ũ so that u− uh = η − ξ.

Hereafter a constant K denotes a generic positive constant depending on Ω
and u, but independent of h and ∆t, and also any two Ks in different places
don’t need to be the same. We state the error bounds of η below, the proofs of
which can be found in [14, 15].

Theorem 4.2 ([14]). If ut ∈ L2(Hs(Ω)) and u0 ∈ Hs(Ω), then there exists a
constant K, independent of h, such that
(i) ∥η∥+ h∥η∥1 ≤ Khµ(∥ut∥L2(Hs) + ∥u0∥s),
(ii) ∥ηt∥+ h∥ηt∥1 ≤ Khµ(∥ut∥L2(Hs) + ∥u0∥s),
where µ = min(k + 1, s).
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Theorem 4.3 ([15]). If ut ∈ L2(Hs(Ω)), utt(t) ∈ Hs(Ω), and u0 ∈ Hs(Ω), then
there exists a constant K, independent of h, such that

∥ηtt∥1 ≤ Chµ−1{∥ut∥L2(Hs) + ∥utt∥s + ∥u0∥s},
where µ = min(k + 1, s).

Lemma 4.4. If u ∈ H1,∞(H2(Ω)) and utt(t) ∈ L2(Ω), then

∥En
1 ∥ ≤ K∆t and ∥En

2 ∥ ≤ K∆t.

Proof. By applying Taylor’s expansion, we obviously have the estimations of En
1

and En
2 . �

Theorem 4.5. In addition to the hypotheses of Theorem 4.2 and 4.3, if u(t) ∈
Hs(Ω), u ∈ H1,∞(H2(Ω)), and ∆t = O(h), then

∥un − unh∥l ≤ K(hµ−l +∆t), l = 0, 1,

where µ = min(k + 1, s).

Proof. Subtracting (4.1) at t = tn from (4.8), we get the equation(
c(x)

ξn − ξn−1

∆t
, vh

)
+
(
a(x)

∇ξn −∇ξn−1

∆t
,∇vh

)
+ (b(x)∇ξn,∇vh)

=
(
c(x)

ξ̂n−1 − ξn−1

∆t
, vh

)
+

(
c(x)

ηn − η̂n−1

∆t
, vh

)
+

(
ψ
∂un

∂ν
− c(x)

un − ûn−1

∆t
, vh

)
+
(
b(x)∇ηn,∇vh

)
+

(
a(x)∇ηn − ηn−1

∆t
,∇vh

)
+

(
a(x)

(
unt − un − un−1

∆t

)
, vh

)
=

6∑
i=1

Ri. (4.11)

Now we set vh = ∂tξ
n = ξn−ξn−1

∆t in (4.11). Then letting three terms of the
left-hand side of (4.11) by L1, L2, and L3, respectively, we get the following
estimates for L1, L2, and L3

L1 =
(
c(x)∂tξ

n, ∂tξ
n
)
≥ c∗∥∂tξn∥2,

L2 =
(
a(x)∇∂tξn,∇∂tξn

)
≥ a∗∥∇∂tξn∥2,

L3 =
(
b(x)∇ξn, ∇ξ

n −∇ξn−1

∆t

)
=

1

∆t
∥
√
b(x)∇ξn∥2 − 1

∆t

(√
b(x)∇ξn,

√
b(x)∇ξn−1

)
≥ 1

∆t
∥
√
b(x)∇ξn∥2 − 1

2∆t

(
∥
√
b(x)∇ξn∥2 + ∥

√
b(x)∇ξn−1∥2

)
=

1

2∆t

(
∥
√
b(x)∇ξn∥2 − ∥

√
b(x)∇ξn−1∥2

)
.
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Now let ϵ > 0 be sufficiently small, but independent of h and ∆t. Since

ξ̂n−1 − ξn−1 = ξn−1(x − d̃∆t)− ξn−1(x )

= ξn−1(x )− d̃∆t∇ξn−1(x̂ ∗)− ξn−1(x )

for some x̂ ∗ ∈ (x − d̃∆t,x ), R1 can be estimated as follows:

R1 ≤ K∥∇ξn−1∥2 + ϵ∥∂tξn∥2.

By noting that

ηn − η̂n−1 = (ηn − ηn−1) + (ηn−1 − η̂n−1)

= ∆tηt(t
n−1
∗ ) + d̃∆t∇η(x̂ ∗, t

n−1)

for some tn−1
∗ ∈ (tn−1, tn) and x̂ ∗ ∈ (x̂ ,x ), we can estimate R2 as follows:

R2 =
(
c(x)[ηt(x, t

n−1
∗ ) + d̃∇η(x̂∗, tn−1)], ∂tξ

n
)

=
(
c(x)ηt(x, t

n−1
∗ ), ∂tξ

n
)
+
(
η(x̂∗, t

n−1),−∇ · (c(x)d̃∂tξn)
)

≤ K
(
∥ηt∥2L∞(L2) + ∥ηn−1∥2

)
+ ϵ∥∂tξn∥2 + ϵ∥∇∂tξn∥2

≤ K(h2µ) + ϵ∥∂tξn∥2 + ϵ∥∇∂tξn∥2.

By Lemma 4.4, we obviously get

R3 ≤ K∥En
1 ∥2 + ϵ∥∂tξn∥2 ≤ K(∆t)2 + ϵ∥∂tξn∥2.

By (4.10), Theorem 4.3, and the Taylor expansion, we have

R4 +R5 =
(
b(x)∇ηn,∇∂tξn

)
+
(
a(x)

∇ηn −∇ηn−1

∆t
,∇∂tξn

)
=

(
a(x)

(∇ηn −∇ηn−1

∆t
− ηnt

)
,∇∂tξn

)
=

(
a(x)∆t∇ηtt(tn−1

θ ),∇∂tξn
)

≤ K(∆t)2h2(µ−1) + ϵ∥∇∂tξn∥2 ≤ Kh2µ + ϵ∥∇∂tξn∥2,

where tn−1
θ ∈ (tn−1, tn). By the Taylor expansion, we get

R6 =
(
a(x)

(
unt − un − un−1

∆t

)
, ∂tξ

n
)

=
(
a(x)∆tutt(t

n−1
∗ ), ∂tξ

n
)
≤ K(∆t)2 + ϵ∥∂tξn∥2

for some tn−1
∗ ∈ (tn−1, tn). Now by applying the bounds of L1 ∼ L3 and R1 ∼ R6

to (4.11), we obtain

c∗∥∂tξn∥2 + a∗∥∇∂tξn∥2 +
1

2∆t

(
∥
√
b(x)∇ξn∥2 − ∥

√
b(x)∇ξn−1∥2

)
≤ K∥∇ξn−1∥2 + 4ϵ∥∂tξn∥2 + 2ϵ∥∇∂tξn∥2 +K(h2µ + (∆t)2),
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which yields that for sufficiently small ϵ > 0

c∗∆t∥∂tξn∥2 + a∗∆t∥∇∂tξn∥2 +
(
∥
√
b(x)∇ξn∥2 − ∥

√
b(x)∇ξn−1∥2

)
≤ K∆t∥∇ξn−1∥2 +K(h2µ + (∆t)2). (4.12)

Now we sum up both sides of (4.12) from n = 1 to n = N to get

∥
√
b(x)∇ξN∥2 +∆t

[
c∗

N∑
n=1

∥∂tξn∥2 + a∗

N∑
n=1

∥∇∂tξn∥2
]

≤ K∆t
( N∑

n=1

∥∇ξn−1∥2
)
+K

(
h2µ + (∆t)2

)
.

By the discrete-type Gronwall inequality, we get

∥∇ξN∥2 ≤ K(h2µ + (∆t)2),

from which we get by Poincare’s inequality

∥ξN∥2 ≤ K(h2µ + (∆t)2).

Therefore, by using Theorem 4.2 and the triangular inequality, we obtain

∥un − unh∥l ≤ K(hµ−l +∆t), l = 0, 1.

�

By applying Lemma 4.1 to (4.6), we get

(cun, v) + (c−1∆t ∇ · σn,∆t ∇ · τ ) + (ã−1∆t σn,∆t τ ) + (ã∇un,∇v)
= (c−1(cûn−1 +∆t fn +∆t En

1 ), cv +∆t ∇ · τ )
+ (ã−1(a∇un−1 +∆t En

2 ),∆t τ + ã∇v)

and hence, letting v = 0, we obtain

(c−1∇ · σn,∇ · τ ) + (ã−1σn, τ ) =
1

∆t
(ûn−1,∇ · τ ) + (c−1fn,∇ · τ )

+ (c−1En
1 ,∇ · τ ) + 1

∆t
(ã−1a∇un−1, τ ) + (ã−1En

2 , τ ). (4.13)

And letting vh = 0 in (4.7) and applying the definition of the bilinear form A,
we get(

c−1(cunh +∆t ∇ · σn
h),∆t ∇ · τh

)
+
(
ã−1(∆t σn

h + ã∇unh),∆t τh

)
=

(
c−1(cûn−1

h +∆t fn),∆t ∇ · τh

)
+
(
ã−1(a∇un−1

h ),∆t τh

)
,

which implies that

∆t(unh,∇ · τh) + ∆t2(c−1∇ · σn
h,∇ · τh) + ∆t2(ã−1σn

h , τh) + ∆t(∇unh, τh)

= ∆t(ûn−1
h ,∇ · τh) + ∆t2(c−1fn,∇ · τh) + ∆t(ã−1a∇un−1

h , τh).
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Therefore we have

(c−1∇ · σn
h,∇ · τh) + (ã−1σn

h, τh)

=
1

∆t
(ûn−1

h ,∇ · τh) + (c−1fn,∇ · τh) +
1

∆t
(ã−1a∇un−1

h , τh). (4.14)

For σ ∈ W , we define an elliptic projection σ̃ ∈ W h of σ satisfying(
c−1∇ · (σ − σ̃),∇ · τh

)
+ λ(σ − σ̃, τh) = 0, ∀τh ∈ W h, (4.15)

where λ is a positive real number. By applying the Lax-Milgram lemma, the
existence of σ̃ can be obtained.

Lemma 4.6. If σ ∈ W ∩Hs(Ω), then there exists a constant K > 0 such that

∥σ − σ̃∥l ≤ Khµ−l∥σ∥s, l = 0, 1,

where µ = min(k + 1, s).

Proof. By the difinition of σ̃ and (3.5), we get

∥c− 1
2∇ · (σ − σ̃)∥2 =

(
c−1∇ · (σ − σ̃), ∇ · (σ −Πhσ)

)
− λ(σ − σ̃,Πhσ − σ̃)

≤ ∥c− 1
2∇ · (σ − σ̃)∥∥c− 1

2∇ · (σ −Πhσ)∥+ λ∥σ − σ̃∥∥Πhσ − σ̃∥
and so

∥c− 1
2∇ · (σ − σ̃)∥2

≤ (∥c− 1
2∇ · (σ −Πhσ)∥2) + λ(∥σ − σ̃∥2 + ∥Πhσ − σ̃∥2)

≤ Kh2(µ−1)∥σ∥2s + λ(∥σ − σ̃∥2 + 2∥Πhσ − σ∥2 + 2∥σ − σ̃∥2).

Therefore, by (3.4), we have

∥c− 1
2∇(σ − σ̃)∥ ≤ Khµ−1∥σ∥s +Kλ∥σ − σ̃∥ (4.16)

for sufficiently small λ > 0. We let φ ∈ H2(Ω) be the solution of an elliptic
problem {

−∇(c−1∇ ·φ) + λφ = σ − σ̃, in Ω,

(c−1∇ ·φ)n = 0, on ∂Ω,
(4.17)

where n denotes the outward normal unit vector to ∂Ω. By the regularity
property of the elliptic problem, we have ∥φ∥2 ≤ K∥σ − σ̃∥. Using (3.4), (3.5),
(4.15), (4.16), and (4.17), we obtain the following estimation

∥σ − σ̃∥2 =
(
σ − σ̃,−∇(c−1∇ ·φ) + λφ

)
=

(
∇ · (σ − σ̃), c−1∇ ·φ

)
+ λ(σ − σ̃,φ)

=
(
c−1∇ · (σ − σ̃),∇ · (φ−Πhφ)

)
+ λ(σ − σ̃,φ−Πhφ)

≤ K∥c− 1
2∇ · (σ − σ̃)∥∥c− 1

2∇ · (φ−Πhφ)∥+Kλh2∥σ − σ̃∥∥φ∥2
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≤ Kh∥c− 1
2∇ · (σ − σ̃)∥∥φ∥2 +Kλh2∥σ − σ̃∥∥φ∥2

≤ Kh∥c− 1
2∇ · (σ − σ̃)∥∥σ − σ̃∥+Kλh2∥σ − σ̃∥2

≤ Kh(hµ−1∥σ∥s + ∥σ − σ̃∥)∥σ − σ̃∥+Kλh2∥σ − σ̃∥2.

Now if we choose h sufficiently small, then we get ∥σ − σ̃∥ ≤ Khµ∥σ∥s. �

Theorem 4.7. In addition to the hypotheses of Theorem 4.5, if σ ∈ W∩Hs(Ω),
then

∥σn − σn
h∥ ≤ K(hµ +∆t),

where µ = min(k + 1, s).

Proof. By subtracting (4.14) from (4.13), we have(
c−1∇ · (σn − σn

h),∇ · τh

)
+ (ã−1(σn − σn

h), τh)

=
1

∆t
(ûn−1 − ûn−1

h ,∇ · τh) +
1

∆t
(ã−1a∇(un−1 − un−1

h ), τh)

+ (c−1En
1 ,∇ · τh) + (ã−1En

2 , τh)

=
1

∆t

(
(ûn−1 − ûn−1

h )− (un−1 − un−1
h ),∇ · τh

)
− 1

∆t

(
∇(un−1 − un−1

h ), τh

)
+

1

∆t

(
ã−1a∇(un−1 − un−1

h ), τh

)
+ (c−1En

1 ,∇ · τh) + (ã−1En
2 , τh)

=
1

∆t

(
(ûn−1 − ûn−1

h )− (un−1 − un−1
h ),∇ · τh

)
−
(
ã−1b∇(un−1 − un−1

h ), τh

)
+ (c−1En

1 ,∇ · τh) + (ã−1En
2 , τh). (4.18)

Now we let π = σ − σ̃, ρ = σ̃ − σh. From (4.18), we get(
c−1∇ · (πn + ρn),∇ · τh

)
+
(
ã−1(πn + ρn), τh

)
=

1

∆t
(η̂n−1 − ξ̂n−1 − (ηn−1 − ξn−1),∇ · τh)

−
(
ã−1b∇(ηn−1 − ξn−1), τh

)
+ (c−1En

1 ,∇ · τh) + (ã−1En
2 , τh). (4.19)

Choosing τh = ρn in (4.19) and applying the integration by parts, we obtain

(c−1∇ · ρn,∇ · ρn) + (ã−1ρn,ρn)

=− (c−1∇ · πn,∇ · ρn)− (ã−1πn,ρn) +
1

∆t
(η̂n−1 − ηn−1,∇ · ρn)

− 1

∆t
(ξ̂n−1 − ξn−1,∇ · ρn) +

(
∇(ã−1b)(ηn−1 − ξn−1),ρn

)
+
(
ã−1b(ηn−1 − ξn−1),∇ · ρn

)
+ (c−1En

1 ,∇ · ρn) + (ã−1En
2 ,ρ

n). (4.20)
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Note that
1

∆t
(η̂n−1 − ηn−1,∇ · ρn) ≤ K∥∇ηn−1∥∥∇ · ρn∥

and
1

∆t
(ξ̂n−1 − ξn−1,∇ · ρn) ≤ K∥∇ξn−1∥∥∇ · ρn∥.

By applying (4.15) to (4.20), we get

∥c− 1
2∇ · ρn∥2 + ∥ã− 1

2ρn∥2

≤K
[
λ∥πn∥∥ρn∥+ ∥πn∥∥ã− 1

2ρn∥+ ∥∇ηn−1∥∥c− 1
2∇ · ρn∥

+ ∥∇ξn−1∥∥c− 1
2∇ · ρn∥+ (∥ηn−1∥+ ∥ξn−1∥)(∥ã− 1

2ρn∥+ ∥c− 1
2∇ · ρn∥)

+ ∥En
1 ∥∥c−

1
2∇ · ρn∥+ ∥En

2 ∥∥ã−
1
2ρn∥

]
.

By using Lemma 4.4, Lemma 4.6, and Theorem 4.5, we get

∥c− 1
2∇ · ρn∥2 + ∥ã− 1

2ρn∥2

≤K
(
∥πn∥2 + ∥∇ηn−1∥2 + ∥∇ξn−1∥2 + ∥ηn−1∥2 + ∥ξn−1∥2 + (∆t)2

)
≤K

(
h2µ∥σn∥2s + h2(µ−1)∥un−1∥2s + (∆t)2

)
≤ K(h2(µ−1) + (∆t)2). (4.21)

Let ψn ∈H2(Ω) be the solution of an elliptic problem{
ã−1ψn −∇(c−1∇ ·ψn) = ρn, in Ω,

(c−1∇ ·ψn)n = 0, on ∂Ω,
(4.22)

where n denotes the outward normal unit vector to ∂Ω. By the regularity

property of the elliptic problem, we have ∥ψn∥2 ≤ K∥ρn∥. We let ψ̃
n
be the

elliptic projection of ψn onto W h defined by exactly the same way as (4.15).

Then using (4.19) and (4.22) with τh = ψ̃
n
, we get

∥ρn∥2 = (ρn, ã−1ψn)− (ρn,∇(c−1∇ ·ψn))

= (ã−1ρn,ψn) + (c−1∇ · ρn,∇ ·ψn)

= (ã−1ρn,ψn − ψ̃
n
) + (ã−1ρn, ψ̃

n
)

+ (c−1∇ · ρn,∇ · (ψn − ψ̃
n
)) + (c−1∇ · ρn,∇ · ψ̃

n
)

= (ã−1ρn,ψn − ψ̃
n
) + (c−1∇ · ρn,∇ · (ψn − ψ̃

n
))− (ã−1πn, ψ̃

n
)

− (c−1∇ · πn,∇ · ψ̃
n
) +

1

∆t
(η̂n−1 − ηn−1,∇ · ψ̃

n
)

− 1

∆t
(ξ̂n−1 − ξn−1,∇ · ψ̃

n
)− (ã−1b∇(ηn−1 − ξn−1), ψ̃

n
)

+ (c−1En
1 ,∇ · ψ̃

n
) + (ã−1En

2 , ψ̃
n
) =

9∑
i=1

Ii. (4.23)
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By using (4.21), Lemma 4.6, and the fact that ∥ψn − ψ̃
n
∥ ≤ ch2∥ψn∥2, we get

the estimations of I1 ∼ I3 as follows:

I1 =(ã−1ρn,ψn − ψ̃
n
) ≤ K∥ρn∥∥ψn − ψ̃

n
∥ ≤ Kh2∥ρn∥∥ψn∥2 ≤ Kh2∥ρn∥2,

I2 =
(
c−1∇ · ρn,∇ · (ψn − ψ̃

n
)
)
≤ Kh∥∇ · ρn∥∥ψn∥2 ≤ Kh∥∇ · ρn∥∥ρn∥

≤ Kh(hµ−1 +∆t)∥ρn∥ ≤ K(hµ +∆t)∥ρn∥,

I3 =− (ã−1πn, ψ̃
n
) ≤ K∥πn∥(∥ψn − ψ̃

n
∥+ ∥ψn∥)

≤ K∥πn∥(h2∥ψn∥2 + ∥ψn∥)
≤ Khµ∥σn∥s(h2∥ρn∥+ ∥ρn∥) ≤ Khµ∥ρn∥.

By the definitions of σ̃ and ψ̃
n
and Theorem 4.5, we have the estimations of

I4 ∼ I6 as follows:

I4 =− (c−1∇ · πn,∇ · ψ̃
n
) = λ(πn, ψ̃

n
) ≤ K∥πn∥∥ψ̃

n
∥ ≤ Khµ∥ρn∥,

I5 =
1

∆t
(η̂n−1 − ηn−1,∇ · ψ̃

n
) ≤ K∥ηn−1∥∥ψ̃

n
∥2

≤K∥ηn−1∥(∥ψn − ψ̃
n
∥2 + ∥ψn∥2) ≤ K∥ηn−1∥∥ψn∥2 ≤ K(hµ)∥ρn∥,

I6 =
1

∆t
(ξ̂n−1 − ξn−1,∇ · ψ̃

n
) ≤ K∥ξn−1∥∥ψn∥2 ≤ K(hµ +∆t)∥ρn∥.

Using the definition ψn, Theorem 4.2, and Lemma 4.4, we estimate I7 ∼ I9 as
follows:

I7 =−
(
ã−1b∇(ηn−1 − ξn−1), ψ̃

n
)

=
(
ηn−1 − ξn−1, (∇(ã−1b)) · ψ̃

n
)
+ (ηn−1 + ξn−1, (ã−1b)∇ · ψ̃

n
)

≤K(∥ηn−1∥+ ∥ξn−1∥)∥ψ̃
n
∥1

≤K(∥ηn−1∥+ ∥ξn−1∥)(∥ψn − ψ̃
n
∥1 + ∥ψn∥1) ≤ K(hµ +∆t)∥ρn∥,

I8 =(c−1En
1 ,∇ · ψ̃

n
) ≤ K∥En

1 ∥(∥∇ · (ψn − ψ̃
n
)∥+ ∥∇ ·ψn∥) ≤ K∆t∥ρn∥,

I9 =(ã−1En
2 , ψ̃

n
) ≤ K∆t∥ρn∥.

By applying the estimations of I1 ∼ I9 to (4.23), we obtain

∥ρn∥2 ≤ Kh2∥ρn∥2 +K(hµ +∆t)∥ρn∥.

Therefore ∥ρn∥ ≤ K(hµ + ∆t) holds for sufficiently small h > 0. Thus by the
triangular inequality and Lemma 4.6, we obtain the result of this theorem. �

5. Numerical example

In this section, we will present some numerical results to verify the conver-
gence order of the split least-squares CMFEM proposed in (4.8) and (4.9). For
the sake of convenience, we consider the one dimensional convection dominated
Sobolev equation (1.1) with c(x) = d(x) = 1, a(x) = b(x) = 0.001 and Ω = [0, 1].
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We construct the approximation of u(x, t) on the finite element space consist-
ing of the piecewise linear polynomials defined on the uniform grids and the
approximation of σ(x, t) on the finite element space consisting of the piecewise
quadratic polynomials defined on the uniform grids. Choose the exact solution
u(x, t) as follows:

u(x, t) =

{
(25(x− t− 0.2)(0.6 + t− x))4, 0.2 ≤ x− t ≤ 0.6,

0, otherwise,
(5.1)

and compute f(x, t) = ut + ux − 10−3uxx − 10−3utxx by substituting u(x, t)
defined in (5.1). Notice that u(x, t) ∈ H4(Ω) and σ(x, t) ∈ H2(Ω)

The numerical results for uh(x) at T = 0.4 are given in Table 1 in terms of
the space mesh size h and the time mesh size △t. We know from Table 1 that
the convergence orders in L2 and H1 norms for uh at T = 0.4 are consistent
with the results in Theorem 4.5.

Table 1. The estimates for uh

(h,△t) ∥u− uh∥ order(order/2) ∥u− uh∥1 order
(1/20, 1/400) 0.236490e− 1 1.037926e+ 0
(1/40, 1/1600) 0.574480e− 2 2.04(1.02) 0.509088e+ 0 1.03
(1/80, 1/6400) 0.141995e− 2 2.02(1.01) 0.253263e+ 0 1.01
(1/160, 1/25600) 0.354024e− 3 2.00(1.00) 0.126478e+ 0 1.00
(1/320, 1/102400) 0.886114e− 4 2.00(1.00) 0.632202e− 1 1.00
(1/640, 1/409600) 0.223377e− 4 1.99(1.00) 0.316078e− 1 1.00

Table 2. The estimates for σh

(h,△t) ∥σ − σh∥ order(order/2)
(1/20, 1/400) 0.936948e− 2
(1/40, 1/1600) 0.236267e− 2 1.99(1.00)
(1/80, 1/6400) 0.595235e− 3 1.99(1.00)
(1/160, 1/25600) 0.150335e− 3 1.99(1.00)
(1/320, 1/102400) 0.378825e− 4 1.99(1.00)
(1/640, 1/409600) 0.952258e− 5 1.99(1.00)

The corresponding numerical results for σh at T = 0.4 are given in Table 2
in terms of the space mesh size h and the time mesh size △t. We know from
Table 2 that the convergence order in L2 norm for σh at T = 0.4 is consistent
with the result in Theorem 4.7.
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