Abstract
A latin square of order n is an $n{\times}n$ array with entries from a set of n numbers arrange in such a way that each number occurs exactly once in each row and exactly once in each column. Two latin squares of the same order are orthogonal latin square if the two latin squares are superimposed, then the $n^2$ cells contain each pair consisting of a number from the first square and a number from the second. In Europe, Orthogonal Latin squares are the mathematical concepts attributed to Euler. However, an Euler square of order nine was already in existence prior to Euler in Korea. It appeared in the monograph Koo-Soo-Ryak written by Choi Seok-Jeong(1646-1715). He construct a magic square by using two orthogonal latin squares for the first time in the world. In this paper, we explain Choi' s orthogonal latin squares and the history of the Orthogonal Latin squares.
2006년 이전까지도 유럽의 오일러가 직교라틴방진의 첫 연구자로서 인정을 받아왔다. 그러나 오일러 이전에 조선의 최석정이 오일러 이전에 이미 9차의 직교라틴 방진을 만들었다는 사실이 2006년 출판된 '조합론 디자인 편람' 에 소개됨으로써 우리만 알고 있던 사실이 세계적으로 공인되었다. 본 논문에서는 최석정과 양휘산법의 마방진을 비교하고 세계최초로 만들어진 최석정의 직교라틴방진과 오일러 가설의 역사를 설명한다.