Orthogonal Latin squares of Choi Seok-Jeong

최석정의 직교라틴방진

  • Received : 2010.07.16
  • Accepted : 2010.08.09
  • Published : 2010.08.31

Abstract

A latin square of order n is an $n{\times}n$ array with entries from a set of n numbers arrange in such a way that each number occurs exactly once in each row and exactly once in each column. Two latin squares of the same order are orthogonal latin square if the two latin squares are superimposed, then the $n^2$ cells contain each pair consisting of a number from the first square and a number from the second. In Europe, Orthogonal Latin squares are the mathematical concepts attributed to Euler. However, an Euler square of order nine was already in existence prior to Euler in Korea. It appeared in the monograph Koo-Soo-Ryak written by Choi Seok-Jeong(1646-1715). He construct a magic square by using two orthogonal latin squares for the first time in the world. In this paper, we explain Choi' s orthogonal latin squares and the history of the Orthogonal Latin squares.

2006년 이전까지도 유럽의 오일러가 직교라틴방진의 첫 연구자로서 인정을 받아왔다. 그러나 오일러 이전에 조선의 최석정이 오일러 이전에 이미 9차의 직교라틴 방진을 만들었다는 사실이 2006년 출판된 '조합론 디자인 편람' 에 소개됨으로써 우리만 알고 있던 사실이 세계적으로 공인되었다. 본 논문에서는 최석정과 양휘산법의 마방진을 비교하고 세계최초로 만들어진 최석정의 직교라틴방진과 오일러 가설의 역사를 설명한다.

Keywords

References

  1. <中國歷代算學集成>, 上, 中, 下, 山東人民出版社, 1994.
  2. <中國歷代算學集成>, 上, 中, 下, 山東人民出版社, 1994.
  3. 김태성, 김원규, 사상산서구수략연구, 과학교육연구논총, Vol. 9:1-12, 1992.
  4. 최석정 (정해남, 허민 역), 구수략, 교우사, 2006.
  5. 이동훈, 한상근, 마방진에대하여, 한국수학교육학회지시리즈E(1998) 제7집, 201-213, 1998.
  6. 오윤용, 한상근, 최석정과 그의 마방진, 한국수학교육학회지 시리즈 A(1993), Vol. 32, No 3, 205-219, 1993.
  7. 한상근, 최석정과 그의 구수략, 한국수학교육학회 뉴스레터 (1998) 14권 2호 통권 54호.
  8. 홍영희, 朝鮮算學과 數理精蘊, 한국수학사학회지 19(2006), No. 2, 25-46.
  9. 홍정하 (강신원, 장혜원 역), 구일집, 교우사, 2006
  10. Allan Adler, "Magic N-Cubes Form a Free Monoid," the elctronic journal of combinatorics 4(1997), #R15
  11. Charles J. Colbourn, Jeffrey H. Dinitz (Editor), Handbook of Combinatorial Designs, 2nd edition, page 12, Chapman and Hall, 2006.
  12. Ko-Wei Lih, "A remarkable Euler square before Euler," Mathematics Magazine, 83(2010), 163- 167.(2010) https://doi.org/10.4169/002557010X494805
  13. http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Clausen.html