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Abstract
This paper proposes a weighted least squares support vector machine for asymmet-

ric least squares regression. This method achieves nonlinear prediction power, while
making no assumption on the underlying probability distributions. The cross valida-
tion function is introduced to choose optimal hyperparameters in the procedure. Ex-
perimental results are then presented which indicate the performance of the proposed
model.

Keywords: Asymmetric least squares regression, cross validation, expectile, least
squares support vector machine, percentile.

1. Introduction

Asymmetric least squares (ALS) regression is the least squares analogue of quantile regres-
sion. The solution of an ALS regression is known as an expectile. This name was originally
proposed by Newey and Powell (1987) who note that the ALS solution is determined by the
properties of the expectation of exceedances beyond the solution. It has been shown that
there exists a one-to-one mapping from expectiles to quantiles. Thus this is used as the basis
for estimating value-at-risk (VaR) and expected shortfall (ES). See for details Efron (1991),
Yao and Tong, (1996) and Taylor (2008).

Support vector machine (SVM), introduced by Vapnik (1995), is a useful tool for data
mining, especially in the fields of pattern recognition and regression. During the past few
years, SVM has gained a lot of popularity due to its solid theoretical foundation and good
behaviors. Kernel trick of SVM also has been demonstrated to be an effective method for
solving nonlinear statistical problems. See for details Hwang (2010a, 2010b), Seok (2010) and
Shim and Lee (2009). Suykens and Vandewalle (1999), from another perspective, proposed
least-squares SVM (LS-SVM), which instead uses a nonsparse loss function: sum square
error (SSE). This trick converts the inequality constraints in classical SVM to equality ones.

In this paper we propose to use a weighted LS-SVM to define a generalization of the
ALS regression method. The rest of this paper is organized as follows. In Section 2 we
give a brief review of ALS regression. In Section 3 we show how this can be extended to
a nonparametric ALS regression model, whose estimation is based on an iterative weighted
LS-SVM. In Section 4 we perform the numerical studies through two examples.
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2. Asymmetric least squares regression

We begin with the data set {(xi, yi), i = 1, · · · , n}, thought of as a point cloud in (d+ 1)
-dimensional Euclidean space Rd+1, the xi being d × 1 covariate vectors and the yi being
scalar responses. The linear ALS regression method directly builds the functional relations
between the predictorsX and the τth expectile µτ (x) by the following minimization problem

min
µγ∈Ω

n∑
i=1

ρτ (yi − µτ (xi)), (2.1)

where Ω is the function space from Rd → R and ρτ (·) is the asymmetric least squared error
loss function

ρτ (r) =

{
τr2, r > 0

(1− τ)r2, otherwise
, (2.2)

The minimization problem (2.1) can be expressed in the way of least asymmetrically weighted
squares format as follows:

min
µγ∈Ω

n∑
i=1

vi(τ)(yi − µτ (xi))
2 (2.3)

with

vi(τ) =

{
τ, yi > µτ (xi)

1− τ, yi ≤ µτ (xi)
. (2.4)

To make the above minimization problem tractable, Newey and Powell (1987) suggested a
linear function form of µτ (x)

µτ (x) = b+wtx, (2.5)

where b ∈ R and w ∈ Rd are the parameters to be determined according to the following
optimization problem

min
b,w

n∑
i=1

ρτ (yi − b−wtxi). (2.6)

See for details Efron (1991), Yao and Tong (1996) and Taylor (2008).

3. ALS regression using weighted LS-SVM

3.1. Weighted LS-SVM

Given a training data set {xi, yi} ni=1 with each input xi ∈ Rd and corresponding response
yi ∈ R, we consider the following optimization problem in primal weight space given weight
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on each observation:

L(w, b,e) =
1

2
wtw +

γ

2

n∑
i=1

viie
2
i (3.1)

subject to equality constraints yi − wtφ(xi) − b = ei, i = 1, · · · , n, where vii are weights
determined in an appropriate way according to the given problem. Here φ : Rd → Rdf

is a nonlinear feature mapping function which maps the input space into a higher dimen-
sional(possibly infinite dimensional) feature space, weight vector w in Rdf in primal weight
space, error variables ei ∈ R and bias term b. It is well known that φ(xi)

tφ(xj) = K(xi,xj),
which are obtained from the application of Mercer (1909)’s conditions. The cost function
with squared error and regularization corresponds to a form of ridge regression. To find
minimizers of the objective function, we can construct the Lagrangian function as follows:

L(w, b, e;α) =
1

2
wtw +

γ

2

n∑
i=1

viie
2
i −

n∑
i=1

αi(w
tφ(xi) + b+ ei − yi), (3.2)

where αi’s are the Lagrange multipliers. Then, the conditions for optimality are given by

∂L

∂w
= 0 → w =

n∑
i=1

αiφ(xi)

∂L

∂b
= 0→

n∑
i=1

αi = 0 (3.3)

∂L

∂ei
= 0→ ei =

1

γvii
αi, i = 1, · · · , n

∂L

∂αi
= 0→ ei − yi +wtφ(xi) + b = 0, i = 1, · · · , n

After eliminating ei and w, we have the solution by the following linear equations,K +
1

γ
V −1 1

1′ 0

[α
b

]
=

[
y
0

]
, (3.4)

where Kij = φ(xi)
tφ(xj) = K(xi,xj) and V is a diagonal matrix of vii’s.

Finally, for a given x in dual space the nonlinear LS-SVM becomes

f(x) =

n∑
i=1

αiK(xi,x) + b. (3.5)

Then, for the given training data set, fλ = (f(x1), · · · , f(xn))t can be expressed as the
linear combination of yi’s as follows:

fλ = Hy, (3.6)

where λ is the set of the regularization parameter and the kernel parameter, H = (K,1)S1

and S1 is a (n+ 1)× n submatrix of the inverse of the leftmost matrix S of (3.4) such that
S−1 =

(
S1,S2

)
.

Note that the ordinary LS-SVM can be seen a weighted LS-SVM with the identity weight
matrix such that V = I.
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3.2. Iterative weighted LS-SVM for nonlinear ALS regression

A distribution of random variable is characterized by its expectiles similar to its character-
ization by quantiles. Quantiles have a strong intuitive appealing, but expectiles are known
to be easier to compute and more efficient.

Given a training data set {xi, yi}ni=1 with each input xi ∈ Rd and corresponding response
yi ∈ R, if the distribution of yi’s are known, the θth quantile regression function given x,
qθ(x) can be obtained by minimizing the following function:

(1− θ)
∫ qθ(x)

−∞
|y − qθ(x)|f(y|x)dy + θ

∫ ∞
qθ(x)

|y − qθ(x)|f(y|x)dy. (3.7)

Similarly, the τth expectile regression function given x, µτ (x) can be obtained by mini-
mizing the following function:

(1− τ)

∫ µτ (x)

−∞
(y − µτ (x))2f(y|x)dy + τ

∫ ∞
µτ (x)

(y − µτ (x))2f(y|x)dy. (3.8)

If we apply kernel trick to define a nonlinear generalization of linear ALS regression, the
τth expectile regression function given x, µτ (x) can be obtained as µτ (x) = wtφ(x) + b,
where w and b are solutions to the objective function (3.1) of the weighted LS-SVM with
vii = τI(yi−µ̂τ (xi) > 0)+(1−τ)I(yi−µ̂τ (xi) ≤ 0). From the application of Mercer (1909)’s
conditions, the τth expectile regression function can be expressed as µτ (x) = Kα+ b where
α and b are the solutions to (3.4) with V = diag{vii}. But since vii contains α and b, α
and b cannot be obtained in a step using a weighted LS-SVM but from the iterative method
including a weighted LS-SVM in each step as follows:

(0) Find µ
(0)
τ (x) = Kα+ b using the weighted LS-SVM with V = I.

(1) Find v
(k)
ii = τI(yi − µ̂(k−1)

τ (xi) > 0) + (1− τ)I(yi − µ̂(k−1)
τ (xi) ≤ 0).

(2) Find µ
(k)
τ (x) = Kα+ b using the weighted LS-SVM with V = diag{v(k)

ii }.
(3) Iterate until convergence.

The functional structures of the proposed ALS regression is characterized by the regu-
larization parameter and the kernel parameter. To select these parameters of LS-SVM we
define the cross validation (CV) function as follows:

CV (λ) =
1

n

n∑
i=1

vii(yi − µ̂(−i)
τ (xi))

2 (3.9)

where vii is the final estimate of vii = τI(yi − µ̂τ (xi) > 0) + (1 − τ)I(yi − µ̂τ (xi) ≤ 0)

and µ̂
(−i)
τ (xi) is the expectile regression function estimated without ith observation. Since

for each candidates of parameters, µ̂
(−i)
τ (xi) for i = 1, · · · , n, should be evaluated, selecting

parameters using CV function is computationally formidable. By leaving-out-one lemma
(Craven and Wahba, 1979)

yi − µ̂(−i)
τ (xi) ≈

yi − µ̂τ (xi)

1−
∂µ̂τ (xi)

∂yi

=
yi − µ̂τ (xi)

1− hii
, (3.10)
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where hii is the ith diagonal element of H which is a hat matrix such that µ̂τ =
(µ̂τ (xi), · · · , µ̂τ (xn))t = Hy. Then the ordinary cross validation (OCV) function is ob-
tained as

OCV (λ) =
1

n

n∑
i=1

vii

(
yi − µ̂τ (xi)

1− hii

)2

. (3.11)

Replacing hii by their average tr(H)/n, the generalized cross validation (GCV) function
can be obtained as

GCV (λ) =
n

(n− tr(H))2

n∑
i=1

vii(yi − µ̂τ (xi))
2. (3.12)

4. Numerical studies

In this section, we illustrate the performance of the iterative weighted LS-SVM for ALS
regression through the simulated data sets and a well-known motorcycle data set in Table 1
on page 302 of Haerdle (1989).
Example 4.1 For this example we generate 100 data sets of size 150 in a similar manner

to Shim et al. (2009). The univariate input observations x’s are drawn from a uniform dis-
tribution on the interval (0, 1), the corresponding responses y’s are drawn from a univariate
normal distribution with mean and variance that vary smoothly with x as follows:

y ∼ N(f(x), σ2),

where f(x) = sin(1.5x) sin(2.5x) and σ2 = 0.01 + 0.25(1 − sin2(2.5x)). The τth expectile
regression function given x, µτ (x), is obtained by solving the following equation (Schnabel
and Eilers, 2009),

τ =
G(µτ (x))− µτ (x)F (µτ (x))

2(G(µτ (x))− µτ (x)F (µτ (x))) + (µτ (x)− µ)

where F (u) and G(u) are the distribution function and the partial moment function of
N(f(u), σ2), respectively. Here µ is the mean of the underlying distribution F and satisfies
G(∞) = µ. The RBF kernel, K(x1, x2) = exp(−‖x1 − x2‖2/s2), is utilized and the optimal
values of (γ, s2) are chosen by GCV function in (3.12). We obtained the mean squared error
of (µ̂τ (x) − µτ (x)) and its standard deviation for τ = 0.05, 0.5, 0.95 in each data set. As
results we obtained the averages of 100 mean squared errors and their standard deviations
for the proposed method as (0.0064, 0.0042) for τ = 0.05, (0.0044, 0.0029) for τ = 0.5
and (0.0082, 0.0052) for τ = 0.95, respectively, this implies that the proposed method
has good estimation performance in this example. Figure 4.1 shows that the estimated
expectile regression functions (dotted lines) and true expectile regression functions (solid
lines) are superimposed on the scatter plots. As seen from Figure 4.1, the estimated expectile
regression functions reflect well the heteroscedastic structure of the error terms. They have
their maxima at different x values. For example, the 0.05th, 0.5th and 0.95th expectile
regression functions have maxima at x = 0.67, 0.74 and 0.88, respectively.
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Figure 4.1 An illustration of the proposed method for expectile regression analysis
for a simulated data set of size 150 generated from the process in Example 4.1

Example 4.2 In this example we consider the motorcycle data, which have been widely
used to demonstrate the performance of nonparametric regression methods. The data were
collected performing crash tests with dummies sitting on motorcycles. The head acceleration
(y) of the dummies (in g) was recorded a certain time measured in milliseconds (x) after
they had hit a wall. The RBF kernel is utilized and from GCV function in (3.12) the value of
(γ, s2) is chosen as (1100, 0.5) for τ = 0.05, (100, 0.75) for τ = 0.5 and (100, 0.5) for τ = 0.95,
respectively. In Figure 4.2 the estimated expectile regression functions for τ = 0.05, 0.5, 0.95
are superimposed on the scatter plots. As seen from Figure 4.2, as x increases the variance
of y increases when x < 33 and decreases when x > 33. The estimated expectile regression
functions do reasonably well even in the region beyond 50 milliseconds where the data points
are so sparse that all the expectile functions want to coalesce. As a whole, the proposed
method seems to give a good estimation of true expectile regression functions.
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Figure 4.2 The estimated expectile regression functions for τ = 0.05, 0 5, 0.95
are superimposed on the scatter plots of the motorcycle data

5. Conclusion

ALS regression is an increasingly popular method for estimating the expectiles of a distri-
bution conditional on the values of covariates. In this paper, we dealt with estimating expec-
tile regression function using a weighted LS-SVM, which has lots of potential applications.
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Through the examples we recognized that the proposed procedure can be useful in char-
acterizing the relationship between a response variable and covariates when the behaviour
of nonaverage individuals is of interest. We also recognized that the proposed precedure
derives the satisfying solutions.
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