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Limiting Distributions of Trimmed Least Squares
Estimators in Unstable AR(1) Models

Sangyeol Lee!

ABSTRACT

This paper considers the trimmed least squares estimator of the autore-
gression parameter in the unstable AR(1) model: X; = ¢X;_; + &4, where &
are iid random variables with mean 0 and variance ¢% > 0, and ¢ is the real
number with |¢| = 1. The trimmed least squares estimator for ¢ is defined
in analogy of that of Welsh (1987). The limiting distribution of the trimmed
least squares estimator is derived under certain regularity conditions.

Keywords: An unstable AR(1) model; Robust estimation; Trimmed least squares
estimator, Weak convergence.

1. INTRODUCTION

Consider the first order autoregressive model:
Xj = ¢Xj-1 + €5, (1.1)

where ¢; are iid random variables with mean 0 and variance 0% > 0. It is well-
known that the parameter ¢ determines the characters of {X;}. For example,
if |¢| < 1, {X;} is stationary; if |§| > 1, {X;} is explosive provided the initial
random variable X is given; if |#| = 1, the process is unstable. Moreover,
the statistical properties of the least squares estimator of ¢ is well-studied in
the literature. White (1958) claimed that under the normal assumption on &,
the least squares estimator ¢pg will have a limiting distribution of the random
variable that is a functional of a standard Brownian motion, namely,

n(zs —9) 4 2B -1/ [ B (12)
0

where B denotes a standard Brownian motion. The above is proved in a more
general setting by Chan and Wei (1988). As related literature, we refer to Rao
(1978) and Dickey and Fuller (1979).

"Department of Statistics, Seoul National University, Seoul, 151-742, Korea



152 Sangyeol Lee

Although the least squares estimator has a variety of decent properties, it is
well-known that the estimator has a drawback like the sensitivity to outliers. To
overcome such a problem, it is common to consider employing a robust estimator.
In stationary time series, a great deal of results exist on robust estimation (cf.
Martin and Yohai (1986)). Also, in nonstationary time series, there are papers
concerning robust estimation. For example, Knight (1991) and Herce (1996)
considered M and LAD (least absolute deviation) estimators in random walk
models. However, despite of its popularity, the trimmed least squares estimator
did not get a full attention from researchers. This motivates us to study the
trimmed least squares estimator for the autoregression parameter ¢, when {X;}
in (1.1) is unstable.

The trimmed mean has long been used as a robust estimator for a location in
iid sample since it is easy to compute and understand and works well on real data.
Ruppert and Carroll (1980) and Welsh (1987) generalized the trimmed mean of iid
sample to the linear regression model. Their idea is to construct the least squares
estimator based on the observations whose corresponding residuals, computed
based on a preliminary estimator, lie between the [na]th and [r(1 — §)]th largest
residuals, where 0 < o < 1/2 < § < 1 are trimming proportions. According
to our analysis (¢f. Theorem 1.1), the same approach of Welsh remains vaild in
our setting. Below, we define the trimmed least squares estimator. Later on, its
limiting distribution will be investigated.

Suppose that Xi,..., X, are available observations. Further assume that
Xo = 0. Let ¢, be any preliminary estimator of ¢, such that

n(gn — ¢) = Op(L).

A typical example of such an estimator is the least squares estimator (cf. (1.2)).
Define the residuals, based on ¢,

€y =Xj—¢an_1, j =1,...,TL. (13)
Let en1,...,enn denote the ordered random variables of e1,...,e,. Put
En,ng , nqis an integer
fnq = .
€n[ngl+1 » Otherwise.

Let «, 3 be the real numbers such that 0 < a < 1/2 < 8 < 1, and let
Jj = I(ej < E‘n.a):
Kj - I(fna < €y < gnﬁ):
L; = I(ej > fng)
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Define the «, 8 trimmed least squares estimator as follows:

QZAS - Z?:1 Xj—l [gna(Jj - a) + XjKj + fnﬁ(Lj - (1 - 5))]
o 2?21 X_%_).Kj '

(1.4)

To obtain the limiting distribution of gZJn,a:g, we assume that
(R): The common distribution F' of ¢; has the positve and continuous density
I

Before we state the main theorem, we introduce some notations. Let ¢, be the
number such that F(§;) = g, and let

Pa,6(z) = lba(I(z < &a) — ) +2I(da <z < &p) + Iz > ) — (1 - B)))-
Observe that 1, g(z)/(8 — o) — T'(F), where

T(F) = (6~ o) [ 2dF(a)

is the influence curve for the trimmed mean in iid setting.
Set 72 = Var(sq,5(£5)), 1.6,

= Za(l-a)+ /;ﬁwng(wa%ﬁ(l—ﬁ) (1.5)

~2ata +(1- A} [ ¥ 2dF(z) - 2atsall - B).

Further, let B, B*, W denote three standard Brownian motions, such that for all
s,t €10,1],
sAt

Cov(B(s),W(t))z——{fa/E 2dF(z) + [ 2%dF(z +§ﬁ/ 2dF(z)}.(1.6)

Sa
and

Cov(B(s), B*(t)) = 0 = Cou(B*(s), W(7)). (1.7)

Actually, we need B, B*, W because the trimmed least squares estimator is
expressed as a functional of

[nt] . '
Ba(t) 1/2 ZEJ’ Bl T a2y > (=1ej,
j=1
T

and Wa(t) = =75 3 {Was(es) - (6= 0)T(F)} (18)
i=1
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(see the proof of Theorem 1.1 in Section 3). It is easy to see that (B, By, Wy)
converges weakly to (B, B*, W) in D?[0,1] space (cf. Chan and Wei, 1988, The-
orem 2.2).

The following is the main result of this section.

Theorem 1.1. Suppose that Condition (R) holds. Then,
Y0 Xj1va,s(es)

n(ﬁgn,a,ﬁ - ¢') = (,B — Cl()ﬂ_z ?=1 ng_l + OP(l). (19)
Therefore,
(i) when ¢ =1,
. 4 orJy B()dW () + (8 — o)T(F)o [y B(t)dt.

n(¢n,a,ﬂ QS) —* (,8 _ 01)0'2 fol Bz(t)dt ) (1'10)

(ii) when ¢ = —1,

* 1 o

n(Gap— 6) S ot [ B*(t)dW (t) + (8 — «)T(F)o [y B (t)dt (L.11)

(B — @)a? [y (B*(t))%dt
Remark 1.1. Theorem 1.1 shows that the limiting distribution of the trimmed
least squares estimator does not rely on that of a preliminary estimator for ¢. If
a=0,8 =1, ¢n,qp coincides with the ordinary least squares estimator. In this
case, when ¢ = 1, the limiting distribution of the trimmed least squares in (1.10)
is the same as in (1.2).

The proof of Theorem 1.1 is provided in Section 3. In proving Theorem 1.1,
verifying the following asymptotic result is very crucial: for any K > 0,

n

|z <K i=1
H(z) —¢;1(g; < z)]} = op(1), (1.12)

where H(z) = Ee;I(e; < z). The argument (1.12) is relevant to the oscilla-
tion problem in randomly weighted empirical processes. Boldin (1982) and Koul
(1992, ch. 7) handled similar problems in stationary autoregressive models. Re-
cently, Lee and Wei (1999) considered the oscillation problem in residual empirical
processes from AR(p) unstable processes.

In Section 2, we will verify that (1.12) holds in our setting (¢f. Lemmas 2.1
and 2.2). Our lemmas are formulated not only to deal with the unstable AR(1)
process but also to cover more general cases.
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2. PRELIMINARY RESULTS

In this section, as mentioned earlier, we present some preliminary results
needed for proving Theorem 1.1 in Section 1.

Let (2, F, P) be a probability space. Suppose that ¢; are iid random variables
with mean 0 and variance o2, {Fnj;1 < j < n} is a double array of sub o-fields
of F, such that F,; C Fyn j41 for all n, j, and Y,; are Fy, ;1 measurable random
variables.

Lemma 2.1. Suppose that

lrélja'%{n lYnj| = Op(an), (2.1)
Y Y2 = Op(bn), (2.2)
)

where ayn, by, are positive real numbers. If a sequence of positive real numbers {cp }
and a positive real number v satisfies

Cp — 00, (nbn)l/z/cn = Q(n*!) for some vy > 0, (2.3)
and
ﬂ /n*? = oo for some vy > 0 (2.4)
anCn + by 2 ’ )

then for any K, M > 0,

I'ni= sup c,'|Y {Yajleil(e; < z) — H(z) + H(y) — €51(e; < y)ll = op(1),
{(z,y)€Sn} j=1
(2.5)

where
Sn={(z,y) € R%:jz —y| < Kn7,|z| < M, |y| € M}, H(z)= Ee1l(e; < x).

Proof: Note that I', is bounded by I'}* + Tt~ + 'y + ' 7, where T}t is

n o
the random variable that is the same as [', with Y,j,¢5, H being replaced by
Y.t el HY, where H*(z) = Ee[I(e; < z), and the other random variables are
similarly defined. To prove (2.5) we have to show that each of the four terms is
op(1). Here, we only provide the proof for I'} ™ = op(1) since the other cases can

be handled similarly.



156 Sangyeol Lee

Partition [—M, M| with the points
Tpr =~—M +2Mr/N,, 7=0,...,Np,

where N, = n? and )\ is a positive integer bigger than v and v; + 1. Assume
that (z,y) € Sp and in addition z € [Zpr, Znr41) and y € [Tp, Tpiy1). Note
that |2p 41 — Znr| and |Tp g1 — 24y are bounded by Kn~7 for some K > 0,
and that for i = r,r + L and j = L,I + 1, |[H*(z) — H+(zy;)] < K*N;! and
|H*(y) — HY (zn;)| < K*N;! for some K* > 0. By using the monotonicity
property of the indicator function, we can write that I+ < T’} + R,, where

ry = sup P Z{ [s"'I (6j < Tnp) — H (Tpr) + HT (z01)

| —Tnr | <KDY

—e}I(e; < 2]}

and R, is a random variable which is Op((nb,)Y?/c, Ny). Since Ry, is op(1) by
(2.3), we only have to prove I'} = op(1).
In view of (2.1) and (2.2), it suffices to show that for any 4, B > 0,

=T (max |Yril < Aan, ZY% < Bby) = op(1). (2.6)
i=1
Define
d; = Y,;"j[s;'_f(sj < Znr) = HY (@pr) + HY (2r1) — ] I (5 < @)

T(max Vil < Aan,ZYﬁi < Bby),

— 2
d; = d;I( max [Yoi| < Aan,;Ym- < Bby,).

Observe that
P(d; # d; for some j =1,...,n) = 0. (2.7)

Further, {d},Fj} is a sequence of martingale differences such that ld}] < Ajan
for some A; > 0, and

Z |-7:g 1) € Bibyn™", for some B; > 0.

i=1
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Applying Bernstein’s inequality for martingales (cf. Shorack and Wellner, 1986,
P. 809), we obtain that for § > 0,

i3
P(S d| > cnd) < 2exp{—20?/2(Brbun™"+ Arancad/3)} < exp(—6n*?), 6> 0,
j=1
where the last inequality is due to (2.4). Combining this and (2.7), we have that
P > 6) < 4n®* exp(—6n*2) — 0.
This proves (2.6). O

Lemma 2.2. Assume that an,bn,cn satisfy Conditions (2.1)-(2.4). Further,
suppose that the sequence of positive real numbers {p,} satisfies

gz (brpp* + (ban)/?)

: — 0 for some {3 > 0, (2.8)
ns1
and

Pncs — oo for some {3 > 0. (2.9)

(anbp + a2ep)né2
Then, for any L, M > 0,
n :
A, = sup |c,71 Z{Ynj[st(Ej < splenj +zx) — H(sp;IYnj +z)

lz|<M,|s|<L
+H(z) — €jI(e; < )]} = op(1).

Proof: As we did in the proof of Lemma 2.1, we only provide the proof for
Att =o0p(1), where

AT = sup ~1 Z{ [E+I i < 8, Vi +x) — H (spp ' Yoj + )
IfBISM,lSI<L
+H*(z) - E;I(e_,- < o)} = op(1). (2.10)
Set

e =—M +2Mr /Ny, sm=—L+2Ll/N,, 1,1=0,..., Ny,
where N, = [n)‘] for some A > max{(,7}. For ¢ € [zpr,Tnr+1), § € Iy =
[Snla Sn,l—l—l)’ put

A,"l'j = sup .spn”lYnj, Ay = inf sp; Y
s€ly, s€ly
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Note that

CT_LlYT;;[E;—I(Ej < spp Yo+ 3) — HY (spy ' Yoy + 2) + H (2)
~eFI(ej < Tnyrt)]
¢ YoileF Ies < Ak + @npr) — HY AL + znpp1) + H (2041)
“5+I(EJ < Tnr)] to ly+{H+(AIj + Tngi1) = H (spn Yoy + 7))
+c,, 1Y'"[E“LI (6j € Tpp41) — HY (Tn 1) + H (2) — E;'I(Ej < z)).
(2.11)

IA

Similarly, the LHS of (2.11) is bounded from below by the same of the RHS of
(2.11) with Anj, Znr+1 being replaced by A_, Zn,. Since the sum of the absolute
value of the second term in (2.11) is bounded by

et Y YZOWNT o) + et D Y lO(N Y
j=1

=1
= Op(cy b N ot + ¢ 1B 2N Y = 0p(1),

where the last equality follows from (2.8), and since the sum of the absolute value
of the third term is no more than

n

sup et Y YihledI(e; <) — HY (z) + H (y) — €} I(e5 < )],
lz—y|<Kn=* =1

which is op(1) due to Lemma 2.1, we can write that A, < AfT+AY"+AT~+ R,

where

AT = ma.xlc 12 i SO+ Tne) — HY (AT + 2nr)
j=1

+H+(‘1’m') e E;'rI(Ej < Tng)]ls

AF~ is the same as A}T with A+ being replaced by A7, and R, is a random
variable that is op(1). Hence, to verlfy (2.10), it suffices to show At™ = op(1)
and AT~ = op(1). Here we only prove the former because the latter can be
handled similarly.

If we put
di = YielI(e; < AY; + zne) = HYAY, + Tur) + HY (2nr) — €] I(e5 < Tns)]

nj

X (max |Yni| < Aan,ZYn?z < Bb,), A,B >0,
=1
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in view of (2.1) and (2.2), we will have Af™ = op(1) as long as max, s [¢; ! 327, dj]
= op(1) for any A, B > 0. Here, as we did before in proving Lemma 2.1, consider

j
' 2
dj = d;I(max |Vui] < Aa, ?le Y2 < Bby,).

It can be seen that {d;-,j:j} forms a sequence of martingale differences with
|d;| < 61a2p5! for some 6; > 0, and Y7, E((d;)?|F5-1) < 82bnpyayn for some
d2 > 0. Applying Bernstein’s inequality for martingales, we obtain that for z > 0,

n
P(max|eg" Y dj| 2 2) < (Ny + 1)% exp{—c}2* /2(82anbnpy " + afenpy 2/3)},
7 j:l

which goes to 0 by (2.9). Since dj,d;- satisfy (2.7), we assert (2.10). |

3. PROOFS

We start this section with a Bahadur type representation for the residuals
e1,.--,en given in (1.3). Throughout, Ay; denotes (¢n — ¢)X;-1.

Theorem 3.1. Let F, denote the empirical distribution based on £1,...,¢n.
Then for any o € (0,1),

7741/2(511& ~&a) = nl/Z(a - Fn(fa))/f(fa) - n-—l/2 i Anj + op(1). (3.1)
=1

Particularly,
na —&a = OP(n_1/2)- (32)

Proof: To establish (3.1), we will adopt the idea of Ghosh (1971). Put

Fp(z)=n"" znjf(ej < 3),Gn(z)=1— Fy(z), Gn(z)=1—- F(z),G(z)=1 - F(z).
i=1

Let Vi, = n'/2(€na — £). Note that for any t,
(Va<t) = (a<Fu(n™Pt+£)

(nl/z(é'n(fa +n7Y2) — G(€, +n"Vh))
f(&a)

<t). @



160 Sangyeol Lee

where
tn = n'/2(—a + F(éa +n72))/ £ (Sa).

Obviously, ¢, converges to t. Let
Zt,n = nl/z(én (ga + nﬂl/Zt) - G(ga + n_l/zt))/f(éa)'
Split Z;p, into I, + I, where
Ly = n'2(Ga(ée+n7"2) — GlEa+n71%1))/f(&),
I, = % (Faba+ 72 — Fo(la +n71%0))/f(€).
According to Lee and Wei (1996),
sup In"Y23 {I(ej € 2) — F(z + Anj) + F(z) — I(e; < z)} = op(1), (3.4)
Jj=1
s0 that

I, = n””i{F(éwn‘Wt)—F(£a+n—1/2t+Anj)}/f(§a)+op(1)
i=1

j=1
where the last equality is due to the mean value theorem and the fact maxi<j<q
|An;l = Op(n~1/2). Further, by the arguments of Billingsley (1968, P. 106),

|In - nl/z(Gn(fa) - G(fa))/f({fcz)[ = OP(l)' (36)

Therefore, if we put

Wy = nl/z(Gn(fa) - G(¢a))/fa) — n~1/2 i Anj,

j=1
we have that
Zigp — Wpn = op(1) (3.7)
by (3.5) and (3.6). Particularly, W, = Op(1) because
n~1/? Z Anj = Op(1). (3.8)

J=1

Since, in view of (3.3) and (3.7), V;, and W), satisfy the Conditions (4) and (5) in
Lemma 1 of Ghosh, we obtain (3.1). (3.2) is a direct result of (3.1) and (3.8). O
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Lemma 3.1. Let a € (0,1). Then,
T 2]
n~t Y Xj{I(ej < €na) ~ @} =07t D0 X 1 {I(e5 < £a) — a}
i=1 j=1

+n 7Y X1 {Ang + bna — EalflEa) +0p(1),  (3.9)

j=1

_1ZX-7 16_7 <§na —ﬂ_lzXJ 16_7[(6] < &a)
J=1

17D X 1{Anj + na — €a}éaf (€a) +op(1), (3.10)

=1

and
2N X2 I(ej < ng) =072 Z > I{ej < &) + op(1). (3.11)
j=1

Proof: For brevity, we only provide the proof for (3.10) since the proofs for (3.9)
and (3.11) will follow essentially the same lines.

Write
n Z Xj16il(ej < &no) — Z Xj18il(ej < &) = Iy + I, + 111y,
j=1 j=1
where

I, = n L ZXj_l{EjI(Ej <pa + A'n.j) — H(épa + Anj) + H(éna)
j=1
"EjI(Ej < gna)}v

IIn = ’n_l Z Xjul{H(é’ncx + A‘n.j) - H(fna)},
=1

n-1 ZXj_l{EjI(Ej < fnan) - EjI(Ej < Ea)}:
j=1

11r,

where H(z) = Ee;I(e; < z). First we deal with I,. Putting
Ynj = 7‘1,_1/2X_7'_1, -’Fnj = U(Ei;i < .7), an =1, b, = n, tp = nl/z, Pn = ”1/2:

v=1L, =1 1m=2 G=1, (=1/4 (3.12)
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one can check that these satisfy the conditions of Lemma 2.2. Hence, I, = op(1).
Second, by the mean value theorem,

n
_ !
IT, =n ! ZXj—-lAnjH (an):
j=1
where cy,; is a random variable between £, and £,o+Ap;. Since max;<j<n [An;| =

Op(n~1/?), in view of Theorem 3.1 we have that max;<j<y |cnj—€a| = Op(n™1/2).
This with the fact n™1 Yi=1An; = Op(1) yields that

I =n7' Y X 1Aniéaf(a) + 0p(1). (3.13)
=1

Finally, we deal with III,. Write

I, = nt i Xj_l{H(Ena) - H(fa)} + Ry, (314)

j=1

where

n
Rn=n"1Y" X;_1{e;1(ej < bna) — H(bna) + H(éa) — €1(g5 < &a)}-
j=1
By utilizing Theorem 3.1 and applying Lemma 2.1 to the random variables and
numbers in (3.12), one can show that R, = op(1). On the other hand, the first
term in the RHS of the equality in (3.14) can be rewritten as n~1/2 211 Xj1(6na
—£0)af(&a) + op(1) by the mean value theorem and Theorem 3.1. Combining
this and (3.13)-(3.14), we assert (3.10). O

Proof of Theorem 1.1. Notice that

n Y01 Xj—1{bne(J; — @) + &K + &np(L; — (1 - B))}
n=2y7 1 X7 1 K; '

n(qgn,a,ﬂ - ¢) =
;From Lemma 3.1, it follows that

1 na,p — ¢) = (In + I,) /I, + 0p(1),

where

Li=n"'Y" X;1{Yaples) — (B-AT(F)}, Iy=n"" zn:Xj—lT(F)(ﬂ - a),
i=1

Jj=1
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IIn—n_2Z (e < g5 £&5).
We first deal with I71,. Put
X; = X;I(|X;| < Bn'/?), B> 0.

Since for any B > 0,
‘22 2 {I(¢a < &5 < &5) ~ (B—a)} =op(1),

which can be proved via applying Bernstein’s inequality for martingales, we can
write that

Ir, _n-22 (B —a) +op(1). (3.15)

Assume that ¢ = 1. According to Theorem 2.4(ii) of Chan and Wei (1988),

[nt] 1 [
( /2, Z €5 n1/27- Z{¢a,ﬂ gj) — (e — BT(F)},

__Z i-1{%a,8(€5) - Q)T(F)})

nO"T

1
4, (B(t),W(t), / B(t)dW(t)), (3.16)
0
where B, W are the Brownian motions in (1.6) and (1.7). Meanwhile, by the
continuous mapping theorem,
1 [ 12 1 &y d 1 L
mZeJ—,—T;ZXj_l,WZXj&l 5 (B(t),/o B(t)dt,/o B (t)dt).
j=1 j=1 j=1
(3.17)
Combining (3.15)-(3.17) and Proposition in the Appendix 3 of Chan and Wei

(1988), we obtain (1.10). The proof of (1.11) is quite similar to that of (1.10),
and is omitted for brevity. O



164 Sangyeol Lee

REFERENCES

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

Boldin, M. V. (1982). “Estimation of the distribution of noise in an autoregres-
sion scheme,” Theorey of Probability and its Applications 27 866-871.

Chan, N. H. and Wei, C. Z. (1988). “Limiting distributions of least squares
estiamtes of unstable autoregression processes,” The Annals of Statististics
16 367-401.

Dickey, D. A. and Fuller, W. A. (1979). “Distribution of the estimators for
autoregressive time series with a unit root,” Journal of American Statistical
Association T4 427-431.

Ghosh, J. K. (1971). “A new proof of the Bahadur representation of quantiles
and an application,” The Annals of Mathematical Statistics 42 1957-1961.

Herce, M. A. (1996). “Asymptotic theory of LAD estimation in a unit root
process with finite variance errors,” Econometric Theory 12 129-153.

Knight, K. (1991). “Limit theory for M-estimates in an integrated infinite vari-
ance process,” Econometric theory, T 200-212.

Koul, H. L. (1992). Weighted Empiricals and Linear Models. IMS Lecture
Notes-Monograph Series, Vol. 21. Hayward, California.

Lee, S. and Wei, C. Z. (1999) “On residual empirical processes of stochastic
regression models with applications to time series,” To appear in the Annals
of Statistics.

Martin, R. D. and Yohai, V. J. (1986). “Influence functions for time series,”
The Annals of Statistics 14 781-818.

Rao, M. M. (1978). “Asymptotic distribution of an estimator of the boundary
parameter of an unstable process,” The Annals of Statistics 15 1667-1682.

Ruppert, D. and Caroll, R. J. (1980). “Trimmed least squares estimation in the
linear model,” Journal of American Statistical Association T5 828-838.

Shorack, G. and Wellner, J. (1986). Empirical processes with Applications to
Statistics. Wiley, New York. 75 828-838.



Trimmed Least Squares Estimator 165
Welsh, A. H. (1987). “The trimmed mean in the linear model,” The Annals of
Statsitics 15 20-36.

White, J. S. (1958). “The limiting distribution of the serial correlation coefficient
in the explosive case,” The Annals of Mathematical Statistics 29 1188-1197.



