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PACKING LATIN SQUARES BY BCL ALGEBRAS

YONGHONG LIU

Abstract. We offered a new method for constructing Latin squares. We
introduce the concept of a standard form via example for Latin squares of
order n and we also call it symmetric BCL algebras matrix, and thereby
become BCL algebra representations of the picture of Latin squares. Our
research shows that some new properties of the Latin squares with BCL
algebras are in Zn.

AMS Mathematics Subject Classification : 05B15, 03G25.
Key words and phrases : Latin squares, BCL algebras, matrix, BIBD,
NP-complete.

1. Introduction

The Latin squares of order n, i.e., an n-by-n array where 1 through n occurs
precisely once in each row and each column. Bose et al. [1] proved that Euler’s
conjecture (the reason stems from the nonrepresentational formulation of the
problem of the 36 officers) was false for all n > 6. But it often common concerns
in Latin squares design that the construct question requires extensive study, e.g.,
a natural generalization of orthogonality of Latin squares is given in an article
by Liang [2]. The symmetries of the partial Latin squares has been studied by
Falcón [3]. Completing partial of the Latin squares has been discussed by Cas-
selgren and Ha̋ggkvist [4]. Hedayat and Seiden [5] clearly found that the Latin
squares can be written in terms of orthogonal arrays in 1974. For completing
Latin squares, technically speaking, it is actually about the constructive proof
of the Evans conjecture, due to Smetaniuk [6]. The role of the Latin squares
and sets of mutually orthogonal Latin squares in the design of experiments is
obvious; see for example the book (Street and Street [7]). Dénes and Keedwell
in their book [8] in 1991 that the Latin squears are very useful tool in theory
and applications. With excellent properties Latin squares has a wide range of
applications. Significantly, Latin squares can be used in statistics; see for ex-
ample (Ryan and Morgan [9]), in quantum physics; see for example (Musto and
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Vicary [10]) and in error correcting code of memory systems; see for example
(Hsiao and Bossen [11]).

It is generally known that the multiplication table of finite group identified
a Latin square, but it has very special properties, and it is hard for count the
number of elements in Latin square of order n. The point is that BCL algebras
were invented and studied by Yonghong [12] in 2011. (for other similar refer-
ences and results see Yonghong [13]). In practice, the BCL algebras is a Cayley
table, describes the structure of Latin squares by arranging all the possible prod-
ucts of all the group’s elements in a square table reminiscent of an appropriate
multiplication table.

On the general problem of determining the algebraic properties of a Latin
square of standard form, has fascinated combinatorial designs theorists down
the ages — so, in this paper, we will propose a standard form of Latin squares,
which this is done when we define the symmetric BCL algebras matrix, along
with a completely new method, a practice known as “hill climbing” used to
construct it. We also will cover some new properties for Latin squares with
BCL algebras.

2. Preliminaries

Definition 2.1. Let n be a positive integer, and let S be a set of n distinct
elements that is we take S to be Zn = {0, 1, · · · , n− 1}, where we number the
rows and the columns of Latin squares as 0, 1, · · · , n− 1.

Definition 2.2. An n-by-n Latin square is a set of n2 triples (r, c, s), where
r is the row, c is the column, and s is the symbol, and 1 ≤ r, c, s ≤ n, such
that all ordered pairs (r, c) are distinct, all ordered pairs (r, s) are distinct, and
all ordered pairs (c, s) are distinct. The sets of n2 triples called the orthogonal
array representation of the Latin squares.

Definition 2.3. An n-by-n array Latin L in which some positions are unoccu-
pied and other positions are occupied by one of the integers {0, 1, · · · , n − 1}.
Suppose that if an integer k occurs in L, then it occurs n times and no two k′s
belong to the same row or column. Then we call L a semi-Latin square. If m
different integers defined occur in L, then we say L has index m. A semi-Latin
square of order n and index m, will be denoted by Lmn .

Theorem 2.4 (Brualdi [14, Theorem 10.4.2]). Let n be a positive integer, and
let r be a non-zero integer in Zn such that the greatest common divisor (popularly
abbreviated GCD) of r and n is 1. Let A be the n × n array whose entry aij in
row i and column j is

aij = r × i+ j (arithmeticr mod n), (1)

for i, j = 0, 1, · · · , n − 1. Then A is a Latin square of order n based on Zn.
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Remark 2.1. Using this idea of interchanging the positions occupied by the
various elements 0, 1, · · · , n− 1 we can always bring a Latin square to standard
form, that is row 0 the integers 0, 1, · · · , n− 1 occur in their natural order.

Remark 2.2. For all n ≥ 2, we can obtain an n × n Latin square from the
table of the group ( Zn, +) if we replace the occurrences of 0 by the value of n.

Definition 2.5. A nonrepresentational n-by-n conference matrix Cn is

Cn =


0

H ′

. . .
H

0


n×n,

(2)

where H and H ′ are 1 or −1. Then

CnC
T
n = (n− 1)In, (3)

where In is unit matrix.

Theorem 2.6 (Smetaniuk [6]). Any partial Latin square of order n with at most
n − 1 filled cells can be completed to a Latin square of the same order.

3. Main results

As a generalization on conference matrix, the following definition is useful for
Latin squares.

Definition 3.1. Let L#
n be the n × n symmetric matrix, and let each main

diagonal entry equal to 0.

L#
n =


0

A′

. . .
A

0


n×n

, (4)

where A = A′T , and row 0 the integers 0, 1, · · · , n − 1. Than L#
n is a standard

form of Latin square of order n, such symmetric matrix L#
n is also referred to as

symmetric BCL algebra matrix.

The next example, we obtain a standard form of Latin square L#
n from the

arithmetic of this BCL algebra. On the other hand, the symmetric BCL al-
gebras matrix in solving construct problems is very important in building a
standard form Latin square.
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Table 1. BCL operation

→ 0 1 i 1 + i

0 0 1 i 1 + i
1 1 0 1 + i i
i i 1 + i 0 1
1 + i 1 + i i 1 0

Example 3.2. Let X = {0, 1, i, 1+ i}. Define a binary operation → on X given
by the following → multiplication Table 1 (Cayley table): Let x, y, z ∈ X and
write x = 1, y = i, z = 1 + i. Then (X;→, 0) is a BCL algebra, and the Table 1
is just a symmetric BCL algebra matrix by Definition 3.1, which is a standard
form of Latin square, that is L#

4 = {0, 1, i, 1+ i} of order 4. Using the arithmetic
of this BCL algebras we obtain the following Latin square:

L#
4 =


0 1 i 1 + i
1 0 1 + i i
i 1 + i 0 1

1 + i i 1 0

 . (5)

Example 3.3. The 4-by-4 Latin squares in Example 3.2 in the orthogonal array
representation of Latin squares there are the triples (r, c, s) by Definition 2.2
that contain exactly 16 that is

{(r, c, s)} → {· · · , (i, 1 + i, 1), · · · }. (6)
Definition 3.4. Let L#

n be a standard form of Latin square of order n, if some
positions are unoccupied in L#

n . Then L#
n is a semi-Latin square, will be denoted

by L#)
n .

Remark 3.1. Here is very similar to Definition 2.3, but not that we need to
consider the index.
Definition 3.5. Let L#1

n , L#2
n , · · · , L#n−1

n be an arrays of L#
n based on Zn if

each pair (L#a
n , L#b

n ) (a ̸= b) is orthogonal. Then L#
n is orthogonal, will be

denoted by L#⊥
n .

Algebraically, a Latin square L#
n is characterized as being the Cayley table

of the BCL algebras.
Theorem 3.6. Up to n × n symmetric matrix, the multiplication table of the
BCL algebras is a standard form of Latin square L#

n of order n.
Proof. The Latin property of this array follows from the properties of multiplica-
tion in BCL algebras. By the definition of standard form L#

n , the multiplication
table there is no repeated element in row or in column.
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Let L#
n = {a1, a2, · · · , an} and let multiplication table A = (aij). Then

aij = ai → aj . For any i with 1 ≤ i ≤ n, since ai → x = b, and this equation
has a unique solution, therefore, x iterates over all of the element n in L#

n , and
by this time, b, too. This shows that ai1, ai2, · · · , ain is a permutation of L#

n .
Similarly, we have aij , a2j , · · · , anj for 1 ≤ j ≤ n. So A is a Latin square of
order n on L#

n .
Conversely, if A = (aij) is a Latin square of order n on L#

n , since ai → aj =
aij , for 1 ≤ i, j ≤ n, by Definition 3.1, defined biary operation → on L#

n . Then
(L#

n ; →, 0) is a BCL algebra. �

Theorem 3.7. Let n be a positive integer. Then there exists a set of n−1L#⊥′

n s.

Proof. Let L#1
n , L#2

n , · · · , L#n−1
n are arrays of L#⊥

n , without loss of generality,
by Definition 3.5 the arrays L#1

n , L#2
n , · · · , L#n−1

n are Latin squares of order n
and contains one of the integers 1, 2, · · · , n− 1 in the row 1, column 0 position,
and no two of then contain the same integer in this position. Use pigeon-hole
principle, the largest number is at most n − 1. By Theorem 2.4 and let #r

and #s be distinct nonzero integers, by reductio, we get #r = #s, it bound to
mean row i = k (same ordered pair), a contradiction. Thus, we find a set of
n− 1L#⊥′

n s, as required. �
Theorem 3.8. L#

n is a BIBD of index parameter λ = 1.

Proof. It suffices to observe that the pigeon-hole principle is used in the L#
n . �

Corollary 3.9. Let n be a positive integer, let Λ(n) denote the largest number
of L#⊥

n . Then

Λ(mk) ≥ min{Λ(m), Λ(k)}, (7)
where n = mk (m and k are for orders).

Theorem 3.10. Let A, A′ ∈ L#
n and let S be a symmetric BCL algebra matrix.

Suppose Cn is a matrix

Cn =

(
0 A′T

µA S

)
. (8)

where µ = 1 or −1. Then Cn is a L#
n .

Proof. Application of Theorem 3.6 to Cn, and by Definition 3.1 let S = L#
n and

let A = 1 = A′T , we have
L#T
n = µL#

n or (9)
µL#T

n = L#
n . (10)

By Definition 2.5, Cn is conference matrix. We use Cn to construct a bigger L#
n ,

is that
L#
n = Cn × In, (11)

which proves that Cn is a L#
n . �



138 Yonghong Liu

Remark 3.2. The Latin square of order n constructed in Theorem 3.10 is noth-
ing but the L#

n hill climbing to produce L#
n of lager order, so to the structural

form of the whole Latin square expanded continuously.

Theorem 3.11. Let L#)
n be a semi-Latin square, and let n > 3. Then L

#)
n has

a completion.

Proof. This is immediate from Theorem 2.6 and the fact that some positions are
unoccupied in L#

n . By Definition 3.4, we use the inductive method, the cases
n ≤ 2 being trivial, we have a partial Latin square of order n > 3 with at most
n− 1 filled cells to get a complete Latin square. �

The L#
n completion problem is a special case of the Latin square completion

problem. We offer the following corollary.

Corollary 3.12. Let A, A′ ∈ L#
n and let S be a symmetric BCL algebra matrix.

Then L#
n is NP-complete.

Proposition 3.13. Let order n > 3, the L#
n can be constructed in polynomial-

time.

Remark 3.3. This Proposition 3.13, in fact, refer to Béjar et al. [15], the only
difference here is that L#

n has symmetry.

4. Conclusion

In this paper, the standard form Latin squares is presented. We’ve now packed
Latin squares, via the basic representation of symmetric BCL algebras matrix,
and their properties are discussed. One interesting consequence is that the Latin
squares of L#

n -type is also NP-complete. In addition, we regard BCL algebras
closely related to Balanced Incomplete Blockk Design (BIBD).
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