The results of performing first survey after learning linear equation and second survey after 5 months to find out whether there is change in solving process while seventh grade students solve linear equations are as follows. First, as a result of performing McNemar Test in order to find out the correct answer ratio between first survey and second survey, it was shown as $p=.035^a$ in problem x+4=9 and $p=.012^a$ in problem $x+\frac{1}{4}=\frac{2}{3}$ of problem type A while being shown as $p=.012^a$ in problem x+3=8 and $p=.035^a$ in problem 5(x+2)=20 of problem type B. Second, while there were students not making errors in the second survey among students who made errors in the solving process of problem type A and B, students making errors in the second survey among the students who expressed the solving process correctly in the first survey were shown. Third, while there were students expressing the solving process of linear equation correctly for all problems (type A, type B and type C), there were students expressing several problems correctly and unable to do so for several problems. In conclusion, even if a student has expressed the solving process correctly on all problems, it would be difficult to foresee that the student is able to express properly in the solving process when another problem is given. According to the result of analyzing the reaction of students toward three problem types (type A, type B and type C), it is possible to determine whether a certain student is 'able' or 'unable' to express the solving process of linear equation by analyzing the problem solving process.
In the process of solving a linear equation, some questions had equal sign('=') relation properly, while other questions did not have equal sign('=') relation properly. Since whether students could express equal sign('=') relation properly or not is determined by questions, the direction for teaching should be instituted, and instruction and teaching should be conducted by comparing and analyzing after conducing tests on may items. Most of students who got the answer for items without the method of solving a linear equation solved the items using binomial. For questions asking to solve using the characteristic of equality, most of students solved the questions using binomial instead of using the characteristic of equality. Therefore, instruction and learning to solve equations using both the characteristic of equality and binomial have to be achieved.
Students have difficulties in solving linear equation problems with a variable on the right side rather than linear equation problems a variable on the left side of the sign of equality. In order for students to overcome such difficulties, opportunities to experience many types of basic linear equation problems would have to be provided. Also, it is necessary to examine the process of students' problem solving process by constructing various types of evaluation item and test them in instruction and learning of linear equations, or grasp students' studying statues through individual interview and based on theses, error correction through feedbacks have to be achieved.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.9
/
pp.3458-3481
/
2021
Existing methods for blind identification of linear block codes without a candidate set are mainly built on the Gauss elimination process. However, the fault tolerance will fall short when the intercepted bit error rate (BER) is too high. To address this issue, we apply the reverse algebra approach and propose a novel "two-step-screening" algorithm by solving the linear error equations on the binary Galois field, or GF(2). In the first step, a recursive matrix partition is implemented to solve the system linear error equations where the coefficient matrix is constructed by the full codewords which come from the intercepted noisy bitstream. This process is repeated to derive all those possible parity-checks. In the second step, a check matrix constructed by the intercepted codewords is applied to find the correct parity-checks out of all possible parity-checks solutions. This novel "two-step-screening" algorithm can be used in different codes like Hamming codes, BCH codes, LDPC codes, and quasi-cyclic LDPC codes. The simulation results have shown that it can highly improve the fault tolerance ability compared to the existing Gauss elimination process-based algorithms.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.23
no.3
/
pp.203-210
/
2019
We present the three-dimensional volume reconstruction model using the modified Cahn-Hilliard equation with a fractional Laplacian. From two-dimensional cross section images such as computed tomography, magnetic resonance imaging slice data, we suggest an algorithm to reconstruct three-dimensional volume surface. By using Laplacian operator with the fractional one, the dynamics is changed to the macroscopic limit of Levy process. We initialize between the two cross section with linear interpolation and then smooth and reconstruct the surface by solving modified Cahn-Hilliard equation. We perform various numerical experiments to compare with the previous research.
In this paper, we present and analyze a fully discrete numerical method for solving the time-fractional diffusion wave equation: ∂βtu - div(a∇u) = f, 1 < β < 2. We first construct a difference formula to approximate ∂βtu by using an interpolation of derivative type. The truncation error of this formula is of O(△t2+δ-β)-order if function u(t) ∈ C2,δ[0, T] where 0 ≤ δ ≤ 1 is the Hölder continuity index. This error order can come up to O(△t3-β) if u(t) ∈ C3 [0, T]. Then, in combinination with the linear finite volume discretization on spatial domain, we give a fully discrete scheme for the fractional wave equation. We prove that the fully discrete scheme is unconditionally stable and the discrete solution admits the optimal error estimates in the H1-norm and L2-norm, respectively. Numerical examples are provided to verify the effectiveness of the proposed numerical method.
In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.
The purpose of this study was to investigate students' problem solving process based on the model of IDEAL if they learn to solve word problems of simultaneous linear equations through structure-representation instruction. The problem solving model of IDEAL is followed by stages; identifying problems(I), defining problems(D), exploring alternative approaches(E), acting on a plan(A). 160 second-grade students of middle schools participated in a study was classified into those of (a) a control group receiving no explicit instruction of structure-representation in word problem solving, and (b) a group receiving structure-representation instruction followed by IDEAL. As a result of this study, a structure-representation instruction improved word-problem solving performance and the students taught by the structure-representation approach discriminate more sharply equivalent problem, isomorphic problem and similar problem than the students of a control group. Also, students of the group instructed by structure-representation approach have less errors in understanding contexts and using data, in transferring mathematical symbol from internal learning relation of word problem and in setting up an equation than the students of a control group. Especially, this study shows that the model of direct transformation and the model of structure-schema in students' problem solving process of I and D stages.
We observed the process for solving linear equations of two 5th grade elementary students, who do not have any pre-knowledge about solving linear equation. The way of students' usage of fractional schemes and manipulations are closely observed. The change of their scheme adaptation are carefully analyzed while the coefficients and constants become complicated. The results showed that they used various fractional scheme and manipulations according to the coefficients and constants. Noticeably, they used repeating fractional schemes to establish the equivalence relation between unknowns and the given quantities. After establishing the relationship, equivalent fractions played important role. We expect the results of this study would help shorten the gap between the arithmetic and the algebraic thinking.
The Journal of Korean Institute of Communications and Information Sciences
/
v.16
no.6
/
pp.556-565
/
1991
Using the WDZ decomposition algorithm, a parallel algorithm is presented for solving the linear system Ax=b which has an nxn nonsingular tridiagonal matrix. For implementing this algorithm a CAM systolic arrary is proposed, and each processing element of this array has its own CAM to store the nonzero elements of the tridiagonal matrix. In order to evaluate this array the algorithm presented is compared to theis compared to the LU decomposition algorithm. It is found that the execution time of the algorithm presented is reduced to about 1/4 than that of the LU decomposition algorithm. If each computation process step can be dome in one time unit, the system of eqations is solved in a systolic fashion without central control is obtained in 2n+1 time steps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.