DOI QR코드

DOI QR Code

THREE-DIMENSIONAL VOLUME RECONSTRUCTION BASED ON MODIFIED FRACTIONAL CAHN-HILLIARD EQUATION

  • CHOI, YONGHO (DEPARTMENT OF MATHEMATICS AND BIG DATA, DAEGU UNIVERSITY) ;
  • LEE, SEUNGGYU (DEPARTMENT OF MATHEMATICS AND RESEARCH INSTITUTE OF NATURAL SCIENCE, GYEONGSANG NATIONAL UNIVERSITY)
  • Received : 2019.09.03
  • Accepted : 2019.09.14
  • Published : 2019.09.25

Abstract

We present the three-dimensional volume reconstruction model using the modified Cahn-Hilliard equation with a fractional Laplacian. From two-dimensional cross section images such as computed tomography, magnetic resonance imaging slice data, we suggest an algorithm to reconstruct three-dimensional volume surface. By using Laplacian operator with the fractional one, the dynamics is changed to the macroscopic limit of Levy process. We initialize between the two cross section with linear interpolation and then smooth and reconstruct the surface by solving modified Cahn-Hilliard equation. We perform various numerical experiments to compare with the previous research.

References

  1. M.W. Vannier, J.L. Marsh, J.O.Warren, Three dimensional CT reconstruction images for craniofacial surgical planning and evaluation, Radiol., 150(1) (1984), 179-184. https://doi.org/10.1148/radiology.150.1.6689758
  2. P.J. Koltai and G.W. Wood, Three dimensional CT reconstruction for the evaluation and surgical planning of facial fractures, JAMA Otolaryngol. Head Neck Surg., 95(1) (1986), 10-15.
  3. L.J. Marentette and R.H. Maise, Three-dimensional CT reconstruction in midfacial surgery, JAMA Otolaryngol. Head Neck Surg., 98(1) (1988), 48-52. https://doi.org/10.1177/019459988809800109
  4. Z. Tian, X. Jia, K. Yuan, T. Pan, and S.B. Jiang, Low-dose CT reconstruction via edge-preserving total variation regularization, Phys. Med. Biol., 56(18) (2011), 5949. https://doi.org/10.1088/0031-9155/56/18/011
  5. A.K. Hara, R.G. Paden, A.C. Silva, J.L. Kujak, H.J. Lawder, and W. Pavlicek, Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study, AJR Am. J Roentgenol., 193(3) (2009), 764-771. https://doi.org/10.2214/AJR.09.2397
  6. L.L. Geyer, U.J. Schoepf, F.G. Meinel, J.W. Nance et al., State of the art: iterative CT reconstruction techniques, Radiol. 276(2) (2015), 339-357. https://doi.org/10.1148/radiol.2015132766
  7. E. Soodmand, G. Zheng,W. Steens, R. Bader, L. Nolte, and D. Kluess, Surgically Relevant Morphological Parameters of Proximal Human Femur: A Statistical Analysis Based on 3D Reconstruction of CT Data, Orthop. Surg., 11(1) (2019), 135-142. https://doi.org/10.1111/os.12416
  8. A. Amruta, A. Gole, and Y. Karunakar, A systematic algorithm for 3-D reconstruction of MRI based brain tumors using morphological operators and bicubic interpolation, 2010 2nd Int. Conf. Comp. Techn. Dev. IEEE, 2010.
  9. A. Gholipour, J.A. Estroff, C.E. Barnewolt, S.A. Connolly, and S.K. Warfield, Fetal brain volumetry through MRI volumetric reconstruction and segmentation, Int. J Comput. Assist. Radiol. Surg., 6(3) (2011), 329-339. https://doi.org/10.1007/s11548-010-0512-x
  10. Z. Yang, K. Richards, N.D. Kurniawan, S. Petrou, and D.C. Reutens, MRI-guided volume reconstruction of mouse brain from histological sections, J Neurosci. Methods, 211(2) (2012), 210-217. https://doi.org/10.1016/j.jneumeth.2012.08.021
  11. D.F.A. Lloyd, K. Pushparajah, J.M. Simpson, J.F.P. van Amerom, M.P.M van Poppel et al., Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study, The Lancet, 393(10181) (2019), 1619-1627. https://doi.org/10.1016/S0140-6736(18)32490-5
  12. S. Lee, Y. Choi, D. Lee, H.K. Jo, S. Lee, S. Myung, and J. Kim, A modified Cahn-Hilliard equation for 3D volume reconstruction from two planar cross sections, J. Korean Soc. Ind. Appl. Math., 19(1) (2015), 47-56. https://doi.org/10.12941/jksiam.2015.19.047
  13. M. Ainsworth and Z. Mao, Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal., 55(4) (2017) 1689-1718. https://doi.org/10.1137/16M1075302
  14. Z. Weng, S. Zhai, and X. Feng, A Fourier spectral method for fractional-in-space Cahn-Hilliard equation, Appl. Math. Model., 42 (2017) 462-477. https://doi.org/10.1016/j.apm.2016.10.035
  15. J. Bosch and M. Stoll, A fractional inpainting model based on the vector-valued Cahn-Hilliard equation, SIAM J. Imaging Sci., 8(4) (2015) 2352-2382. https://doi.org/10.1137/15M101405X
  16. D. Lee and S. Lee, Image segmentation based on modified fractional Allen-Cahn equation, Math. Probl. Eng., 2019 (2019) 3980181.
  17. D. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation, MRS Proc., 529 (1998) 39. https://doi.org/10.1557/PROC-529-39
  18. A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, W. Cai, M. Meerschaert, M. Ainsworth, and G. Karniadakis, What is the fractional Laplacian?, arXiv preprint arXiv:1801.09767 (2018).
  19. C. Bajaj, E. Coyle, and K. Lin, Arbitrary topology shape reconstruction from planar cross sections, Graph. Model. Im. Proc., 58(6) (1996) 524-543. https://doi.org/10.1006/gmip.1996.0044
  20. M. Xiang, B. Zhang, and D. Yang, Multiplicity results for variable-order fractional Laplacian equations with variable growth, Nonlinear Anal. 178 (2019) 190-204. https://doi.org/10.1016/j.na.2018.07.016