DOI QR코드

DOI QR Code

SECOND DERIVATIVE GENERALIZED EXTENDED BACKWARD DIFFERENTIATION FORMULAS FOR STIFF PROBLEMS

  • OGUNFEYITIMI, S.E. (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BENIN) ;
  • IKHILE, M.N.O. (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BENIN)
  • Received : 2019.07.12
  • Accepted : 2019.09.09
  • Published : 2019.09.25

Abstract

This paper presents second derivative generalized extended backward differentiation formulas (SDGEBDFs) based on the second derivative linear multi-step formulas of Cash [1]. This class of second derivative linear multistep formulas is implemented as boundary value methods on stiff problems. The order, error constant and the linear stability properties of the new methods are discussed.

References

  1. J. Cash, Second derivative extended backward differentiation formula for the numerical integration of stiff system, SIAM J. Numer. Anal. 18 (1981), 21-36. https://doi.org/10.1137/0718003
  2. E. Hairer and G. Wanner, Numerical Methods for Initial Value Problems in Ordinary Differential Equations II, Springer, Berlin, 1996.
  3. G. Dahlquist, Convergence and stability in the Numerical integration of ODEs, Academic Press, New York 4(1956), 69-86.
  4. P. Henrici, Discrete Variable Methods in ODEs, John Wiley, New York, 1962.
  5. J. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley, New York, 1991.
  6. G. Dahlquist, A special stability problem for linear multistep methods, BIT. 3 (1963), 27-43. https://doi.org/10.1007/BF01963532
  7. N. Obreckoff, Neue Quadraturformeln, Abh Preuss Akad. Wiss Math. Nat. K1 4 (1940).
  8. W.H. Enright, it Second derivative multistep methods for stiff ordinary differential equations, SIAM J. Numer. Anal. 11 (1974), 321-331. https://doi.org/10.1137/0711029
  9. G. Ismail and I. Ibrahim, New efficient second derivative multistep methods for stiff systems, appl. Math. Model. 23 (1999), 279-288. https://doi.org/10.1016/S0307-904X(98)10086-0
  10. G. Hojjati, M. Rahimi Ardabili and S. Hosseini, New second derivative multistep methods for stiff systems, appl. Math. Model. 30 (2006), 466-476. https://doi.org/10.1016/j.apm.2005.06.007
  11. J. Cash, On the exponential fitting of composite, multiderivative linear multistep methods, SIAM J. Numer. Anal. 18 (1981), 808-821. https://doi.org/10.1137/0718055
  12. P. Amodio, W.Golik and F. Mazzia , Variable-step boundary value methods based on reverse Adams schemes and their grid distribution, Appl. Numer. Math. 18 (1995), 5-21. https://doi.org/10.1016/0168-9274(95)00044-U
  13. L. Brugnano and D. Trigiante, Convergence and stability of boundary value methods for ordinary differential equations. J. Comput. Appl. Math. 66 (1996), 97-109. https://doi.org/10.1016/0377-0427(95)00166-2
  14. L. Brugnano and D. Trigiante, Solving differential problems by multistep initial and boundary value methods, Gordon and Breach Science Publishers, Amsterdam 1998.
  15. A. Axelsson and J. Verwer, Boundary value techniques for initial value problems in ordinary differential equations, Math. Comput. 45 (1985), 153-171. https://doi.org/10.1090/S0025-5718-1985-0790649-9
  16. J.Ehigie, S. Jator, S. Sofoluwe and A. Okunuga, Boundary value technique for initial value problems with continuous second derivative multistep method of Enright, Comput. Appl. Math. 33 (2014), 81-93. https://doi.org/10.1007/s40314-013-0044-4
  17. S. Jator and R. Sahi, Boundary value technique for initial value problems based on Adams-type second derivative methods, Int. J. Math. Educ. Sci. Educ. iFirst (2010), 1-8.
  18. L. Aceto and D. Trigante, On the A-stable method in the GBDF class, Nonlinear Analysis Real World appl. 3 (2002), 9-23. https://doi.org/10.1016/S1468-1218(01)00009-8
  19. P. Amodio and F. Mazzia, Boundary value methods for the solution of differential-algebraic equations, Appl. Numer. Math. 66 (1994), 411-421.
  20. P. Amodio and F. Mazzia, Boundary value methods based on Adams-type method, Appl. Numer. Math. 18 (1995), 23-25. https://doi.org/10.1016/0168-9274(95)00041-R
  21. L. Brugnano and D. Trigiante, Block boundary value methods for linear hamiltonian systems, Appl. Math. Comput. 81 (1997), 49-68.
  22. L. Brugnano and D. Trigiante, High order multistep methods for boundary value problems. Appl. Numer. Math. 18 (1985), 79-94.
  23. L. Brugnano and D. Trigiante, Block implicit methods for ODEs, in: D Trigiante (Ed.), Recent Trends in Numerical Analysis, Nova Science, New York (2000), 81-105.
  24. F. Iavernafo and F. Mazzia, Convergence and stability of multistep methods solving nonlinear initial value problems. SIAM J. Sci. Comput. 18 (1997), 270-285. https://doi.org/10.1137/S1064827595287122
  25. F. Iavernafo, F. Mazzia, Solving ordinary differential equations by generalized Adams methods: Properties and implementation techniques, Appl. Numer. Math. 28 (1998), 107-126. https://doi.org/10.1016/S0168-9274(98)00039-7
  26. F. Iavernafo, F. Mazzia and D. Trigiante, Eigenvalues and quasi-eigenvalues of branded Toeplitz matrices: some properties and application, Numer. algorithm 31 (2002), 157-170. https://doi.org/10.1023/A:1021197900145
  27. G. Nwachukwu, M. Ikhile and J. Osaghae, On some boundary value methods for stiff IVPs in ODEs, Afr. Mat. 29 (2018) 731-752. https://doi.org/10.1007/s13370-018-0574-4
  28. J. Zhang and H. Chen, Asymptotic stability of block boundary value methods for delay differential-algebraic equations, Math. Comput. Simulation 81 (2010), 100-108. https://doi.org/10.1016/j.matcom.2010.07.012
  29. J. Zhang and H. Chen, Block boundary value methods for delay differential equations, Appl. Numer. Math. 60 (2010), 915-923. https://doi.org/10.1016/j.apnum.2010.05.001
  30. F. Mazzia, Boundary Value Methods for the numerical solution of boundary value problems in differential algebraic equations, Bollettino dellUnione Matematica Italiana 7 (1997), 579-593.
  31. L. Brugnano, F. Lavernaro and T. Susca, Hamiltonian BVMs (HBVMs): implementation details and applications, AIP. Conf. Proc. 1168 (2009), 723-726.
  32. L. Brugnano, F. Lavernaro and D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral methods), J. Numer. Anal. Ind. Appl. Math. 5 (2010), 17-37.
  33. F. Mazzia and A. Nagy, Solving Volterra integro-differential equations by variable stepsize block BS methods: properties and implementation techniques, Appl. Math. Comput. 239 (2014) 198-210.
  34. J. Zhang and H. Chen, Convergence and stability of extended block boundary value methods for Volterra delay integro-differential equations, Appl. Numer. Math. 62 (2012), 141-154. https://doi.org/10.1016/j.apnum.2011.11.001
  35. Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation, J. Differ. Eqn. Appl. 119 (2013), 1127-1242.
  36. Y. Xu, J. Gao and Z. Gao, Stability analysis of block boundary value methods for Neutral pantograph equation with many delays, App. Mat. Model 38 (2014), 325-335. https://doi.org/10.1016/j.apm.2013.06.013
  37. G. Nwachukwu and T. Okor, Second derivative generalised backward differentiation formulae for solving stiff problems, LAENG. Int. J. Appl. Math. 48 (2018), 1-15.
  38. G. Nwachukwu and N. Mokwunyei, Generalized Adams-Type Second Derivative Methods for Stiff Systems of ODEs, LAENG Int. J. Appl. Math. 48 (2018), 4-14.
  39. S. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic Press Inc, London, 1989.
  40. R. Beam and R. Warming, The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci. Comput. 14 (1993), 971-1006. https://doi.org/10.1137/0914059
  41. M. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press Inc., New York, 2004.
  42. X. Wu and J. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput. 123 (2001) 141-153.
  43. C. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, New Jersey, 1971.
  44. F. Ngwane and S.Jator, Block hybrid-second derivative method for stiff systems, Int. J. Pure Appl. Math. 80 (2012) 543-559.
  45. D.J. Higham, N.J. Higham, MaTLAB guide. 2nd ed. SIAM, Philadelphia, 2005.