• Title/Summary/Keyword: Linear multistep formulas

Search Result 4, Processing Time 0.017 seconds

SECOND DERIVATIVE GENERALIZED EXTENDED BACKWARD DIFFERENTIATION FORMULAS FOR STIFF PROBLEMS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.179-202
    • /
    • 2019
  • This paper presents second derivative generalized extended backward differentiation formulas (SDGEBDFs) based on the second derivative linear multi-step formulas of Cash [1]. This class of second derivative linear multistep formulas is implemented as boundary value methods on stiff problems. The order, error constant and the linear stability properties of the new methods are discussed.

A LOCAL-GLOBAL STEPSIZE CONTROL FOR MULTISTEP METHODS APPLIED TO SEMI-EXPLICIT INDEX 1 DIFFERENTIAL-ALGEBRAIC EUATIONS

  • Kulikov, G.Yu;Shindin, S.K.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.697-726
    • /
    • 1999
  • In this paper we develop a now procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. in contrast to the standard approach the error control mechanism presented here is based on monitoring and contolling both the local and global errors of multistep formulas. As a result such methods with the local-global stepsize control solve differential-algebraic equation with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approxima-tions to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the the-oretical results of the paper.

IMPLICIT-EXPLICIT SECOND DERIVATIVE LMM FOR STIFF ORDINARY DIFFERENTIAL EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.224-261
    • /
    • 2021
  • The interest in implicit-explicit (IMEX) integration methods has emerged as an alternative for dealing in a computationally cost-effective way with stiff ordinary differential equations arising from practical modeling problems. In this paper, we introduce implicit-explicit second derivative linear multi-step methods (IMEX SDLMM) with error control. The proposed IMEX SDLMM is based on second derivative backward differentiation formulas (SDBDF) and recursive SDBDF. The IMEX second derivative schemes are constructed with order p ranging from p = 1 to 8. The methods are numerically validated on well-known stiff equations.

MULTI-BLOCK BOUNDARY VALUE METHODS FOR ORDINARY DIFFERENTIAL AND DIFFERENTIAL ALGEBRAIC EQUATIONS

  • OGUNFEYITIMI, S.E.;IKHILE, M.N.O.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.243-291
    • /
    • 2020
  • In this paper, multi-block generalized backward differentiation methods for numerical solutions of ordinary differential and differential algebraic equations are introduced. This class of linear multi-block methods is implemented as multi-block boundary value methods (MB2 VMs). The root distribution of the stability polynomial of the new class of methods are determined using the Wiener-Hopf factorization of a matrix polynomial for the purpose of their correct implementation. Numerical tests, showing the potential of such methods for output of multi-block of solutions of the ordinary differential equations in the new approach are also reported herein. The methods which output multi-block of solutions of the ordinary differential equations on application, are unlike the conventional linear multistep methods which output a solution at a point or the conventional boundary value methods and multi-block methods which output only a block of solutions per step. The MB2 VMs introduced herein is a novel approach at developing very large scale integration methods (VLSIM) in the numerical solution of differential equations.