• Title/Summary/Keyword: Singular Elliptic

Search Result 34, Processing Time 0.018 seconds

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.

A Priori Boundary Estimations for an Elliptic Operator

  • Cho, Sungwon
    • Journal of Integrative Natural Science
    • /
    • v.7 no.4
    • /
    • pp.273-277
    • /
    • 2014
  • In this article, we consider a singular and a degenerate elliptic operators in a divergence form. The singularities exist on a part of boundary, and comparable to the logarithmic distance function or its inverse. If we assume that the operator can be treated in a pointwise sense than distribution sense, with this operator we obtain a priori Harnack continuity near the boundary. In the proof we transform the singular elliptic operator to uniformly bounded elliptic operator with unbounded first order terms. We study this type of estimations considering a De Giorgi conjecture. In his conjecture, he proposed a certain ellipticity condition to guarantee a continuity of a solution.

A REGULARIZED CORRECTION METHOD FOR ELLIPTIC PROBLEMS WITH A SINGULAR FORCE

  • Kim, Hyea-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.927-945
    • /
    • 2012
  • An approximation of singular source terms in elliptic problems is developed and analyzed. Under certain assumptions on the curve where the singular source is defined, the second order convergence in the maximum norm can be proved. Numerical results present its better performance compared to previously developed regularization techniques.

A CERTAIN EXAMPLE FOR A DE GIORGI CONJECTURE

  • Cho, Sungwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.763-769
    • /
    • 2014
  • In this paper, we illustrate a counter example for the converse of a certain conjecture proposed by De Giorgi. De Giorgi suggested a series of conjectures, in which a certain integral condition for singularity or degeneracy of an elliptic operator is satisfied, the solutions are continuous. We construct some singular elliptic operators and solutions such that the integral condition does not hold, but the solutions are continuous.

EXISTENCE OF THE THIRD POSITIVE RADIAL SOLUTION OF A SEMILINEAR ELLIPTIC PROBLEM ON AN UNBOUNDED DOMAIN

  • Ko, Bong-Soo;Lee, Yong-Hoon
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.439-460
    • /
    • 2002
  • We prove the multiplicity of ordered positive radial solutions for a semilinear elliptic problem defined on an exterior domain. The key argument is to prove the existence of the third solution in presence of two known solutions. For this, we obtain some partial results related to three solutions theorem for certain singular boundary value problems. Proof are mainly based on the upper and lower solutions method and degree theory.

POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC SINGULAR BOUNDARY VALUE PROBLEMS IN A BALL

  • Lokenath Debnath;Xu, Xing-Ye
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.237-249
    • /
    • 2004
  • This paper deals with existence of positive solutions of nonlinear elliptic singular boundary value problems in a ball. It is shown that results of Grandall et al. [1] and [2] follow as special cases of our results proved in this article.

ON NONLINEAR ELLIPTIC EQUATIONS WITH SINGULAR LOWER ORDER TERM

  • Marah, Amine;Redwane, Hicham
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.385-401
    • /
    • 2021
  • We prove existence and regularity results of solutions for a class of nonlinear singular elliptic problems like $$\{-div\((a(x)+{\mid}u{\mid}^q){\nabla}u\)=\frac{f}{{\mid}u{\mid}^{\gamma}}{\text{ in }}{\Omega},\\{u=0\;on\;{\partial}{\Omega},$$ where Ω is a bounded open subset of ℝℕ(N ≥ 2), a(x) is a measurable nonnegative function, q, �� > 0 and the source f is a nonnegative (not identicaly zero) function belonging to Lm(Ω) for some m ≥ 1. Our results will depend on the summability of f and on the values of q, �� > 0.

ON EXTREMAL ELLIPTIC K3 SURFACES

  • Ye, Qiang
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.6
    • /
    • pp.1091-1113
    • /
    • 1999
  • In this paper, we first classify the possible configurations of fibrations which are not semi-stable on extremal elliptic K3 surfaces. Then we give a complete list of extremal elliptic K3 surfaces whose singular fibers are all not of type $I_n$.

  • PDF

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.