• 제목/요약/키워드: Semilinear Elliptic equation

검색결과 12건 처리시간 0.021초

LONG TIME BEHAVIOR OF SOLUTIONS TO SEMILINEAR HYPERBOLIC EQUATIONS INVOLVING STRONGLY DEGENERATE ELLIPTIC DIFFERENTIAL OPERATORS

  • Luyen, Duong Trong;Yen, Phung Thi Kim
    • 대한수학회지
    • /
    • 제58권5호
    • /
    • pp.1279-1298
    • /
    • 2021
  • The aim of this paper is to prove the existence of the global attractor of the Cauchy problem for a semilinear degenerate hyperbolic equation involving strongly degenerate elliptic differential operators. The attractor is characterized as the unstable manifold of the set of stationary points, due to the existence of a Lyapunov functional.

RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS IN $R^n$

  • Naito, Yuki
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.751-761
    • /
    • 2000
  • Symmetry properties of positive solutions for semilinear elliptic problems in n are considered. We give a symmetry result for the problem in the feneral case, and then derive various results for certain classes of demilinear elliptic equations. We employ the moving plane method based on the maximum principle on unbounded domains to obtain the result on symmetry.

  • PDF

ON A NEUMANN PROBLEM AT RESONANCE FOR NONUNIFORMLY SEMILINEAR ELLIPTIC SYSTEMS IN AN UNBOUNDED DOMAIN WITH NONLINEAR BOUNDARY CONDITION

  • Hoang, Quoc Toan;Bui, Quoc Hung
    • 대한수학회보
    • /
    • 제51권6호
    • /
    • pp.1669-1687
    • /
    • 2014
  • We consider a nonuniformly nonlinear elliptic systems with resonance part and nonlinear Neumann boundary condition on an unbounded domain. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition.

Oscillation of Certain Second Order Damped Quasilinear Elliptic Equations via the Weighted Averages

  • Xia, Yong;Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제47권2호
    • /
    • pp.191-202
    • /
    • 2007
  • By using the weighted averaging techniques, we establish oscillation criteria for the second order damped quasilinear elliptic differential equation $$\sum_{i,j=1}^{N}D_i(a_{ij}(x){\parallel}Dy{\parallel}^{p-2}D_jy)+{\langle}b(x),\;{\parallel}Dy{\parallel}^{p-2}Dy{\rangle}+c(x)f(y)=0,\;p>1$$. The obtained theorems include and improve some existing ones for the undamped halflinear partial differential equation and the semilinear elliptic equation.

  • PDF

MULTIPLICITY AND STABILITY OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS HAVING NOT NON-NEGATIVE MASS

  • Kim, Wan-Se;Ko, Bong-Soo
    • 대한수학회지
    • /
    • 제37권1호
    • /
    • pp.85-109
    • /
    • 2000
  • In this paper, the multiplicity, stability and the structure of classical solutions of semilinear elliptic equations of the form (equation omitted) will be discussed. Here $\Omega$ is a smooth and bounded domain in $R^{n}$ (n $\geq$ 1), f(x,u) = │u│$^{\alpha}$/sgn(u)-h(x), 0 < $\alpha$ < 1, (n $\geq$ 1) and h is a ${\gamma}$- Holder continuous function on $\Omega$ for some 0 < ${\gamma}$ < 1.a}$ < 1.

  • PDF

ASYMPTOTIC BEHAVIOR OF POSITIVE SOLUTIONS TO SEMILINEAR ELLIPTIC EQUATIONS IN ℝn

  • Lai, Baishun;Luo, Qing;Zhou, Shuqing
    • 대한수학회지
    • /
    • 제48권2호
    • /
    • pp.431-447
    • /
    • 2011
  • We investigate the asymptotic behavior of positive solutions to the elliptic equation (0.1) ${\Delta}u+|x|^{l_1}u^p+|x|^{l_2}u^q=0$ in $\mathbb{R}^n$. We obtain a conclusion that, for n $\geq$ 3, -2 < $l_2$ < $l_1$ $\leq$ 0 and q > p > 1, any positive radial solution to (0.1) has the following properties: $lim_{r{\rightarrow}{\infty}}r^{\frac{2+l_1}{p-1}}\;u$ and $lim_{r{\rightarrow}0}r^{\frac{2+l_2}{q-1}}\;u$ always exist if $\frac{n+1_1}{n-2}$ < p < q, $p\;{\neq}\;\frac{n+2+2l_1}{n-2}$, $q\;{\neq}\;\frac{n+2+2l_2}{n-2}$. In addition, we prove that the singular positive solution of (0.1) is unique under some conditions.

EXISTENCE OF GROP INVARIANT SOULTIONS OF A SEMILINEAR ELLIPTIC EQUATION

  • Kajinkiya, Ryuji
    • 대한수학회지
    • /
    • 제37권5호
    • /
    • pp.763-777
    • /
    • 2000
  • We investigate the existence of group invariant solutions of the Emden-Fowler equation, - u=$\mid$x$\mid$$\sigma$$\mid$u$\mid$p-1u in B, u=0 on B and u(gx)=u(x) in B for g G. Here B is the unit ball in n 2, 1$\sigma$ 0 and G is a closed subgrop of the orthogonal group. A soultion of the problem is called a G in variant solution. We prove that there exists a G invariant non-radial solution if and only if G is not transitive on the unit sphere.

  • PDF

NONEXISTENCE OF NODAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATION WITH SOBOLEV-HARDY TERM

  • Choi, Hyeon-Ock;Pahk, Dae-Hyeon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.261-269
    • /
    • 2008
  • Let $B_1$ be a unit ball in $R^n(n{\geq}3)$, and $2^*=2n/(n-2)$ be the critical Sobolev exponent for the embedding $H_0^1(B_1){\hookrightarrow}L^{2^*}(B_1)$. By using a variant of Pohoz$\check{a}$aev's identity, we prove the nonexistence of nodal solutions for the Dirichlet problem $-{\Delta}u-{\mu}\frac{u}{{\mid}x{\mid}^2}={\lambda}u+{\mid}u{\mid}^{2^*-2}u$ in $B_1$, u=0 on ${\partial}B_1$ for suitable positive numbers ${\mu}$ and ${\nu}$.

  • PDF

CRITICAL POINTS AND MULTIPLE SOLUTIONS OF A NONLINEAR ELLIPTIC BOUNDARY VALUE PROBLEM

  • Choi, Kyeongpyo
    • Korean Journal of Mathematics
    • /
    • 제14권2호
    • /
    • pp.259-271
    • /
    • 2006
  • We consider a semilinear elliptic boundary value problem with Dirichlet boundary condition $Au+bu^+-au^-=t_{1{\phi}1}+t_{2{\phi}2}$ in ${\Omega}$ and ${\phi}_n$ is the eigenfuction corresponding to ${\lambda}_n(n=1,2,{\cdots})$. We have a concern with the multiplicity of solutions of the equation when ${\lambda}_1$ < a < ${\lambda}_2$ < b < ${\lambda}_3$.

  • PDF