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RADIAL SYMMETRY OF POSITIVE SOLUTIONS
FOR SEMILINEAR ELLIPTIC EQUATIONS IN R"

YUKI NAITO

ABSTRACT. Symmetry properties of positive solutions for semilin-
ear elliptic problems in R" are considered. We give a symmetry
result for the problem in the general case, and then derive various
results for certain classes of semilinear elliptic equations. We em-
ploy the moving plane method based on the maximum principle on
unbounded domains to obtain the result on symmetry.

1. Introduction

In this paper, we study the radial symmetry of positive solutions for
semilinear elliptic equations in R". We consider the problem of the form

(L1) { Au+ f(lz|,u) =0 in R"
u(z) - 0 as |z — oo,

where n > 3. We establish a symmetry result for the problem (1.1) in
the general case, and then derive various results for certain classes of
semilinear elliptic equations. Typical equations we shall be interested in
are as follows:
Au—u+u?P =0, p>1,;
1 P .

Au + (1+|m[)3u =0, £>20,p>1;
A SR B
Atz (1+ 2]
Some of those results are already known, but our aim is to treat those
results from a unified point of view.

Au + =0, B8>0, pv>2 pqg>1.
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Our arguments are based on the moving plane method. The method
was first developed by Serrin [13] in PDE theory, and later extended
and generalized by Gidas, Ni, and Nirenberg [2, 3]. In this paper, we
employ the moving plane method based on the maximum principle on
unbounded domains to obtain the result on symmetry.

In Section 2, we state the main theorem, and give some corollaries of
the theorem. In Section 3, we prove the theorem by using the method
of moving planes.

2. Statement of the results

In (1.1), we assume that f(r,u) is continuous and C' in u > 0, and
that f(r,u) is nonincreasing in r > 0 for each fixed u > 0. Our main
result is the following:

THEOREM 1. Let u € C?(R™) be a positive solution of (1.1). Define
U and @ as
(2.1)
U(r) = sup{u(z) : |z| >r} and &(r) =sup{fu(r,s):0<s<U(r)},

respectively. Assume that there exists a positive function W on |x| > Ry
for some Ry > 0 satisfying

(2.2) AW + ®(|z|)W <0 in|z|> Ry and
- Ulle]) _

Then u must be radially symmetric about some point £y € R" and u, < 0
forr = |z — zo| > 0.

We give some corollaries of the theorem. Some of the results presented
here are already known, but our aim is to treat these results from a
unified point of view.

COROLLARY 1. Assume that

fu(r,u) <0 forr >re, 0 < u < u,

with some constants g > 0 and ug > 0. Let u be a positive solution
of (1.1). Then u must be radially symmetric about some point zo € R"
and u, < 0 for r = |z — 29| > 0.
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REMARK. This result has been obtained by [9]. Related results have
been obtained by [3, 5].

Proof. We see that the function U defined by (2.1) satisfies U(r) — 0
as r — oo. Take Ry > 7 so large that U(r) < uy for » > Ry. Define
W as W(z) = 1 on |z|] > Ry. Then W satisfies (2.3). Since &(r) =
max{ fu(r,u) : 0 <u < U(r)} <0 for r > Ry, we have (2.2). Therefore,
we can apply Theorem 1 to conclude the assertion.

For simplicity we consider the equation of the form
(2.4) Au+¢(|z))f(u) =0  in R™
In equation (2.4), we assume that ¢ € C[0, 0o) satisfies
¢(r)>0forr >0 and ¢(r) is nonincreasing in r > 0,
and that f € C'[0,00) with f(u) > 0 for u > 0. O

COROLLARY 2. Assume, furthermore, that
#(r) = O(r?) asr — oo for some ¢ € [-2,0]" and
|f(w)] = O(uP1) asu — 0 for some p > Z—fg
Let u be a positive solution of (2.4) in R" satisfying
B o(|x[_f’—z%) as |z o0 if —2<£<0
* _{ o((loglz|)" ™) as|z| — oo if £=—2.

Then u must be radially symmetric about some point g € R* and u, < 0
for r = |z — xo| > 0.

REMARK. Related results have been obtained by [3, 5, 7, 8]. Li[6] and
Zou[14, 15| have obtained the symmetry results for positive solutions
which have slow decay at infinity.

Proof. We see that the function U defined by (2.1) satisfies

=2

o(r™r1) as r—oo if —2<{£<0,
U(r) = 1
o((logr)™#1) as r — oo if £= 2.
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(i) The case where =2 < £ < 0. Let W(z) = |x|_§:_§ for |z| > 0. Then
W satisfies (2.3) and

AW + m(n —2—m)
|zf?

where m = (£ +2)/(n — 2). We note that n —2 —m > 0 from p >
(n+£)/(n —2). We find that

®(r) = max{¢(r)f'(u) : 0 <u <U(r)} =o(|z|?) as r— oo

Then we have (2.2) for sufficiently large Ry > 0. Therefore, we can apply
Theorem 1 to conclude the assertion.

(ii) The case where £ = —2. Let W(z) = (loglxl)_ﬁ for |z| > 1.
Then W satisfies (2.3) and

n—2 p 1
AW—i—( — > W=0, |zi>1.
»=1 p-17kgll) WFle =

W =0, |z|>0,

We find that
&(r)=o0 (|x|"2(log |:c|)‘1) as r — oo.

Then we have (2.2) for sufficiently large Ry > 0. Therefore, we can apply
Theorem 1 to conclude the assertion. a

COROLLARY 3. In equation (2.4), assume furthermore that ¢ # 0
satisfies

(2.5) /000 ré(r)dr < oo.

Let u be a positive solution of (2.4) in R" satisfying u(z) — c as |z| — oc
for some constant ¢ > 0. Then u must be radially symmetric about the
origin and u, < 0 forr = |z| > 0.

REMARK. Related results have been obtained by [7, 8, 11]. If ¢
is locally Hélder continuous, then every bounded positive solution u
satisfies u(z) — ¢ as || — oo for some constant ¢ > 0. (See [11].)

Proof. Let v(z) = u(z) — c¢. Then v satisfies
{ Av+¢(|lz])h(v) =0 in R",

(2:6) v(z) =0 as |z| — oo,
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where h(v) = g(v + ¢). Since —Av = ¢h > 0, we have v > 0 in R” by
the maximum principle. We apply Theorem 1 to the problem (2.6). We
define U and @ as

U(r) =sup{v(z) : |z| >} and &(r) =sup{¢(r)h'(s): 0 < s <U(r)},

respectively. Since ®(r) < M¢(r) for some constant M > 0 and (2.5)
holds, we have

/ r®(r)dr < oo.
0

Then there exists a positive function W on |z| > Ry for some Ry > 0
satisfying

AW + ®(Jz|)W =0 and hmme(x) > 0.

|z|—00

(See, e.g., [11, Lemma B.1].) Then W satisfies (2.2) and (2.3). Therefore,
Theorem 1 can be applied to conclude the assertion. [

Finally, we consider the semilinear elliptic equations of the form
(Tl (1+|=])
where 3 > 0, 4, v > 2 and p, ¢ > 1 are real constants. The problem of
existence of positive solutions to (2.7) has been studied by [4, 10, 1], and

the solutions structures have been investigated by Chern[1]. Combining
the result {1, Theorem 1.4] and Theorem 1, we obtain the following:

(2.7) Au + =0 inR"

COROLLARY 4. Assume that v > p > 2 and q > p > 1. Let u be a
positive solution of (2.7) satisfying u(z) < (Bu/v)@?) in R". Then u
must be radially symmetric about the origin and u, < 0 for r = |z| > 0.
Furthermore, for the case v = u > 2, all bounded positive solutions of
(2.7) are radially symmetric about the origin and u, < 0 forr = |z| > 0.

Proof. Let

Since
Bu v ¢ 1
<
fT(T, u) (1 +T);¢+1 ( )u+1u — (1 +r)u+1

we have f.(r,u) <0 for 0 < u < (Bu/v)/P),

(=Buw? + vu?),
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Let u be a positive solution of (2.7) satisfying u < (Bp/v)Y le-p), By
the similar arguments as in [1], we obtain limjs_eu(z) = c for some
constant ¢ > 0. Let v(z) = u(z) — c. Then v satisfies v(z) — 0 as
|z| — oo and

Av + g(|z|,v) =0 in R",
where g(r,v) = f(r,v + c). Therefore, we can apply Theorem 1 to con-
clude the assertion by the similar argument as in the proof of Corollary
3.

Let us consider the case where v = y > 2. Chern [1, Theorem 1.4]
has shown that every bounded solution u satisfies

(2.8) u(z) — ¢ as |z| = o0

for some constant ¢ > 0, and that » must be radially symmetric provided
u(z) > B P in R™.

Let u be a positive solution of (2.7) satisfying (2.8). We claim that
u(z) > Y@ P in R if ¢ > BYa-P and u(z) < BY@ P in R if
¢ < fY/a-P), We show the former case. The latter case can be shown
similarly. Assume to the contrary that u(zg) < B/4a=?) for some zp €
R”. Define @ = {z € R" : u(z) < Y@ P}. Since f(r,u) = 0 for
0 < u< BY@ P wehave —Au > 0in Q and u = BY/(4P) on Q. By the
maximum principle, we obtain u > BY/(e-p) in Q. This contradicts the
assumption. Therefore u(z) > /(@7 in R™.

Let u be a positive solution of (2.7) satisfying (2.8). Assume that
¢ > Y4P). Then u(z) > Y@ P in R", and v must be radial symmetric
by Chern’s result. On the other hand, assume that ¢ < (1/@=P) Then
u < BY@P) in R", and u must be radial symmetric by the first part of
this corollary. This completes the proof. O

3. Proof of Theorem 1

To prove Theorem 1, we introduce a few notations. For A € R, we
define T), and %, as
Ty={z=(z1,...,2,) ER":2; = A} and Sy={zeR":z; < A}

For z = (x1,... ,2,) € R" and A € R, let z* be the reflection of z with
respect to the hyperplane Ty, i.e., 2% = (2X — 1, %3, ... ,25). It is easy

to see that, if A > 0,
(3.1) |z} > |z| for z € T,.
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We define vy(z) = u(z) — u(z?) for z € .

LEMMA 1. Let A > 0. Then v, satisfies
(3.2) Avy +cy(z)uy <0 in Xy,

where
(3.3) en(z) = /0 1 fu(m, u(@) + t(u(z) - u(ﬁ)))dt.

Proof. Since f(r,u) is nonincreasing in r and (3.1) holds, we have

0 = Au(z)+ f(lz], u(z)) — Au(a?) - f(|2*], u(z*))
> A(u(z) —u(@) + f(lz], u(@)) - f(lz], u(=?))
= Avy(z) + cr(z)ua(z)
for z € 3, where ¢,(z) is the function defined by (3.3). O

Define the set A as A = {X € (0,00) : va(x) > 0 in £,}. Put
By = {z € R" : |z| < Ry}, where Ry is the constant in the statement of
Theorem 1.

LEMMA 2. Let A > 0. Ifvy > 0 on £, N B, then A € A.

Proof. From Lemma 1 and the assumption, we obtain
Avy+ex(z)un <0 inEy\ By, vx>0 ond(Ey\By).

Since U (r) is nonincreasing, we have 0 < u(z*)+t(u(z) —u(z*)) < U(|z|)
for 0 <t < 1. Then, by (3.3), we have c;(z) < ®(|z|) in Z,. From (2.2)
and (2.3), the positive function W satisfies

AW + ¢\ (z)W <0 in X3\ B, and

as |z| — oo, z € L)\ By.

Hence the maximum principle (Lemma A in Appendix) implies that
vy > 0 in X5 \ Bp. Then vy(z) > 0 in ¥, by the assumption, which
implies that A € A. |
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By Lemma 2, we obtain the following:

LEMMA 3. Let A > 0. If A & A, then there exists =y € £, N By such
that vy(z) < 0.

LEMMA 4. Let A € A. Then 0u/0z; < 0 on Tj.

Proof. By Lemma 1, we have (3.2) and vy > 0 in X,. Since vy =0
on Ty, we obtain dvy/dz; < 0 on Ty by the Hopf boundary lemma.
Therefore, we have

ou 10w,
A Th.
83:1 28171 <0 on A =
Proof of Theorem 1. Since u(z) is positive and limy e u(z) = 0,
there exists R; > Ry such that

(3.4) max{u(z) : |z| > R} < min{u(z) : |z| < Ro},

where Ry is the constant in the statement of Theorem 1. We decompose
the proof of Theorem 1 into several steps.

Step 1. We have [R;,00) C A.

__Let A > Ry. We note that B, C &,. From (3.4), we have vy > 0 in
B,. Then, by Lemma 2, we have A € A, which implies that [R;,00) C A.

Step 2. Let \g € A. Then there exists € > 0 such that (Ag—¢, Ag] C A.

Assume to the contrary that there exists an increasing sequence {;},
i=1,2,..., such that \; € A and X\; — Ao as i — oo. By Lemma
3, we have a sequence {z;}, 1 = 1,2,..., such that z; € ¥, N By and
v, () < 0. A subsequence, which we call again {z;}, converges to some
point zp € X5, N By. Then vy (zo) < 0. Since vy, > 0 in I, we
must have 2y € T),. By the mean value theorem we observe that there
exists a point y; satisfying (Ou/0z1)(y;) > 0 on the straight segment
joining z; to :vg\" for each 2 = 1,2,.... Since y; — o as ¢ — 00, we
have (0u/8z)(xo) > 0. On the other hand, since zp € T),, we have
(Ou/0x;)u(zo) < 0 by Lemma 4. This is a contradiction and Step 2 is
established.

Step 3. We have either
(3.5)

u(z) = u(z™) for some A\; >0 and —g;i <0 onT)for A>X\
1
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or

(3.6) u(z) > u(z’) in X, and ?— <0 onTyfor A>0.
1

Let Ay = inf{A > 0 : (), 00) C A}. We distinguish the following two
cases: (i) Ay > 0; (ii) A; = 0.

(i) The case where Ay > 0. Let vy, (z) = u(x) — u(z™). From the
continuity of u, we have vy, (z) > 0in X,,. It follows from Lemma 1 that
Avy, + ¢y (z)vy, < 01in 3. Hence, by the strong maximum principle,
we have that either vy, > 0 in X, or vy, = 0 in 3,. Assume that
vy, > 0in X,,. Then A; € A. From Step 2, there exists £ > 0 such that
(A1 —¢,A1] € A. This contradicts the definition of A;. Therefore, vy, =0
in Z,,. Since (A;,00) C A, we have u/0z, < 0 on T) for A > Ay by
Lemma 4. Thus we obtain (3.5).

(ii) The case where A\; = 0. From the continuity of u, we have u(z) >
u(z%) in Xy. By Lemma 4 we have du/0z; < 0 on Tj for A > 0. Thus,
(3.6) holds.

If (3.6) occurs in Step 3, we can repeat the previous Steps 1-3 for
the negative z;-direction to conclude that either u is symmetric in the
z1-direction about some plane x; = A\; < 0 or

(3.7) u(z) < u(z®) in Zq.

If (3.7) occurs, then u(z) = u(z°) in Ty. Therefore, u must be symmetric
in z;-direction about some plane, and strictly decreasing away from the
plane. Since the equation (1.1) is invariant under rotation, we may take
any direction as the z;-direction and conclude that u is symmetric in

every direction about some plane. Therefore, u is radially symmetric
about some point zy € R" and u, < 0 for r = |z — 2|. O

Appendix

Let 2 be an unbounded domain in R", and let L denote a uniformly
elliptic differential operator of the form
Lu = a”(z)0;;u + b'(z)0u + c(z)u,

where a¥, b, ¢ € L®(Q2). (We use the notation 9; = 8/0x; and
0;; = 8°/0z;0x;, together with the summation convention for repeated
indices.)
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LEMMA A. Suppose that u # 0 satisfies Lu < 0 in Q and u > 0
on 0S). Suppose, furthermore, that there exists a function w such that
w>0onQUIN and Lw <0 in Q. If

(A1) oy 0 esle]—oo zeq

then u > 0 in Q.

REMARK. If {2 is bounded, we do not require the condition (A.1). See
(12, Chap. 2, Theorem 10].

Proof. First we show that v > 0 in Q. Assume to the contrary that
u(zg) < 0 for some zg € Q. Choose § > 0 so that

From (A.1), there exists R > |zo| satisfying u(z) + dw(z) > 0 on {|z| =
R} N Q. Define Bg = {z € R" : |z| < R}. Then u + dw satisfies
L(u+dw) < 0on QN Bg and u+dw > 0 on §(2N Bg). By [12, Chap.2,
Theorem 10|, (u + dw)/w cannot attain a nonpositive minimum at an
interior point of 2 N Bp unless it is a constant. This contradicts (A.2).
Therefore, u > 0 in Q. By the strong maximum principle, we conclude
that « > 0 in Q. O
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