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MULTIPLICITY AND STABILITY OF SOLUTIONS
FOR SEMILINEAR ELLIPTIC EQUATIONS
HAVING NOT NON-NEGATIVE MASS

WAN SE KiM AND Bongsoo Ko

ABSTRACT. In this paper, the multiplicity, stability and the struc-
ture of classical solutions of semilinear elliptic equations of the form

Au+ f(z,u)=0 in £,
u=0 on 89

will be discussed. Here 2 is a smooth and bounded domain in
R*(n > 1), f(z,u) = |u|*sgn(u) - h(z),0 < a <1, (n>1) and h

is a 7- Holder continuous function on €2 for some 0 < 7 < 1.

1. Introduction

Let © be a smooth and bounded domain in R”(n > 1). In this paper,
we are going to prove multiplicity, stability, and to understand a struc-
ture of classical solutions of the following semilinear elliptic boundary
value problems having not non-negative mass:

0 { Au+ f(z,u)=0 in Q,
u=0 on ON.
Here f(z,u) = |u|%sgn(u) — h(z),0< a <1, (n > 1), h is a 7- Holder

continuous function on 2 for some 0 < 7 < 1, and sgn(u) =1 if u > 0,
sgn(u) = —1 if u < 0. In general, with f(z,u) = g(u) + h(z), We say
that the problem (I) has a positive mass (see [25]) if

g(w)

limsup = < 0.
u—0 u
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Since the growth of the nonlinearity near the origin in our problem is
the plus infinity, this fact motives us to describe our phenomenon by
“non-negative mass” in contrast with the positive mass and we adapt
it in our title.

In [20], J. Mawhin and K. Schmitt treated the solution structure of
the following Landesman-Lazer type nonlinear problem when f(z,u) =
g(u) + h(z) with g is a nonlinearity which is allowed to grow at most
a sublinear rate:

I Au+ (M +ANu+ f(z,u)=0 in Q,
(ID) { u=0 on Of.

Here ); is the first eigenvalue for —A with the homogeneous Dirich-
let data and A is treated as a continuation parameter. They impose
conditions on the behavior of ¢ in a neighbourhood of oo of a kernel
of linear problem to deduce results which say that there are multiple
solutions of (II) for A on one side of zero and guarantee the existence
of at least one solution for A = 0 and A on the other side of zero. Those
multiplicity results are obtained by Leray-Schauder degree theory and
birfurcation from infinity technique.

To get multiplicity in our problem for any such A, first we choose
sufficiently large number ¢ > 0, and so we have a pair of negative
subsolution —c and positive supersolution ¢ of (I). Then, by the sub
and supersolution method, we may have a classical solution of (I) be-
tween them. From this fact, we can construct two pairs of subsolutions
and supersolutions for (I), and then using fixed point index theory,
we prove the existence of distinct three solutions of (I) under some
condition h.

For stability in semilinear parabolic problems. In 1972, Sattinger
[23] used the method of sub- and supersolutions to study the stabil-
ity of solutions of the elliptic boundary value problem as equilibrium
solutions of the parabolic problem

(11D { ug = Au+ f(z,u) in Qx(0,00),

u=0 on 0% x (0,00)

Specifically, he showed that solutions of the elliptic problem which
are obtained by monotone iteration from a sub- or supersolution have
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one-sided stability. If there is a unique solution between a sub-super
solution pair, then it is stable. Several years later, Matano [18] estab-
lished that an intermediate solution exists between two stable solutions.
Existence of these intermediate solutions has also been established by
others (see [2-7,10,14,17]), using degree theory, variational methods,
infinite Morse index theory, or some combination thereof, especially in
the case that either f is independent of z or
f(z,u)

—00 < hmme < limsup —/—* < o©
u=0 u w0 U

for all z € Q.

For more general theory of orbital stability for continuously differen-
tiable increasing order-compact mapping, the existence of orbital sta-
ble solutions for quasilinear parabolic periodic-Neumann or periodic-
regular oblique derivative boundary value problem, the multiplicity
and orbital stability results for periodic-Dirichlet problem with jump-
ing nonlinearity and with coercive growth nonlinearity for semilinear
parabolic equations, we may find those results in (5], [6] and (11, 12,
15], respectively.

Since the function f in the problem (I) satisfies the following limits:

[¢3 [0
lim & sgn(u) — o, lim u®sgn(u)

=0,
u—0 U u—co u
the above results do not imply the existence of distinct three solu-
tions of (I). Also we understand the perturbation theory in variational
methods (see [21, 25]) may not be applicable directly to prove some
multiplicity of solutions. As we know, the stability for solutions of (I)
is not fully understood.

The organization of this paper is as follows: In section 2, we solve
a singular perturbation problem to construct two pairs of subsolutions
and supersolutions of (I), and then by calculating the fixed point index
(see [1], [8)), we show that if ||h|| = sup{|A(z)| : = € Q} is sufficiently
small, (I) has three distinct classical solutions which contains a positive
solution and a negative solution.

In section 3, using the limiting arguments (see [24], [25]) of the
solutions depending on h, we prove stability by the uniqueness: when
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h has one sign on  and ||h|| — oo, (I) has the unique solution. For the
other case, by Green’s identity, we show that if h is non-positive on ,
(I) has the unique positive solution and if-h is non-negative on {2, the
unique negative solution. Especially, we show that if h is identically
zero, then (I) has the unique positive solution and the unique negative
solution.

In section 4, using the calculation of the fixed point index, we find
some structure of solutions varying h: There is a positive number ||h*||
such that (I) has at least three distinct solutions if ||h|| < ||h*||, (1)
has two distinct solutions at ||A*||, and (/) has the unique solution if
||hll > {|R*|]- If h is constant, we prove the existence of S-shaped curve
(u, h) of solution structure on the range —co < h < 0o.

2. The Multiplicity

To get two pairs of subsolutions and supersolutions for (I), we first
solve the following boundary value problem:
{ €2Au + |u|%sgn(u) — du—h(z) =0 in Q

Iye
(Do) u=0 on OS2

Here A > 0 and € > 0 are real constants.

We note that

(1) Jim |u|*sgn(u) — Au — h(z)

|uj—o0 U

=-A<0.

That means that there exists ug > 0 such that ug < u implies
lu|*sgn(u) — h(z) — Au <0

and there exists u; < 0 such that v < u; implies
lu|“sgn(u) — h(z) — Au > 0.

We show that for any given A > 0 with

@) [1 _ ﬂ (;) TatE 4 h(z) <0

for all z € Q, there is €g > 0 such that for any 0 < € < ¢g the problem
(Ine) has a positive solution. Then we note that the solution is a
positive subsolution of the problem (o).
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LEMMA 2.1. Let A > 0 satisfy the inequality (2), let x € Q, and let
flz,u,\) = u® — h(z) — Mu

for allu > 0. Then f(z,-,A) has the positive maximum in u at (%)ﬁ

Proof. Let

Then

ou A
9 [aw;"l - )\} = ala - 1ND)wd 2 <0,
ou
and .
e 1—a @ [s l1—a
feum = [($)7] - r@-2(5)
=
= (%) — h(z) — aTEAEET
= AsSigTa [l —~ 1] — h(z)
a
>0. (by(2))
This completes the proof. O

From (1) and Lemma 2.1, there is u; > w; so that

(3) ud — h(z) — du, = 0.
Furthermore,
@ 9 foyue ) = aus — A <ad —A=0.

ou I}
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LEMMA 2.2. Let A > 0 satisfy (2) and u, be the solution of the
equations (3) and (4). Then

(5) / [ua — h(z) — /\u] du >0
0
for all x € 9.
Proof. Since
1
o < ln'—2,
we get
aln2-1 <0,
and hence

21-%(aln2 -1) < 0.

Consider the function g(c) = 2!~*a. Then ¢(0) = 0 and g(1) = 1.
Now P

T (@) =217 + o(217%)(=n2)
=21"%(1 - aln2)
> 0.

Hence,
2% < 1

for all a € (0,1). Taking In on both sides of the above inequality, we
then have
(1-o)ln2+na<0,

and so
In2<In2* —Ilna.
Therefore,
0< 12"‘ -2
a

for all o € (0,1). Let

flz,u,A) =u® — h(z) — Au
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for all (z,u) € Q x [0,00) and let w, = (%) -a. Then,

flz, 2wz, X)) = [2(%) 1—:;]& — h(z) - )\[2<%> ﬁ]

=2%qToa \a-1 — h(z) — 20T=a AT
= \3-1 [ZO‘aT‘-% - Zaﬁ] — h(z)

= \aTTqTa {2"‘&% - 2] — h(z)

1NT= o [ 1
= (X) al-= [2“5—2] — h(x).
Therefore, if A — 0T, then there is A > 0 so that

for all z € Q, and hence we can assume that

(7) 2w, < Uy
for all z € Q. Then
/MMQ—M@—A]ML—uyJ—h@) _ A
0 Y - a+1 Yz 2 z
ug A
NP
From (2), (3) and (7)
ug A
a+1 - hz) - g Uz
= D+ h(@)] ~ k(@) - 2up (by (3))
= P x 2 T Y
A1 - a) o

(
et D ari@
(

)0 o

l-a 1 1o _« Ll e
(87

1—
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1 o l—a (81 a_].
:al—aAa—l +
a+l o+l o

=0.

Therefore,
/ [u® — h(z) — Auldu > 0.
0
This completes the proof. O

Since the function f(z,u, ) = |u|* — h(z) — Au satisfies the condi-
tions (3), (4), and (5), by the construction (see {13,14,17}) of subsolu-
tions of (I, ), there is a small positive number €1, which also depends
on A and h, such that for any € with 0 < ¢ < ¢; there is a solution
u(+;€) of (I.). Furthermore, 0 < u(z;€) < u, for all z € {2 and

gl_r’%g(m; €) = Uy

uniformly on every compact subset of 2. Hence u(;€) is a subsolution
of (Ip,e)-

Secondly, for each € > 0, we find a supersolution of ({o,e) which is
larger than u(-;€) on €2. Let

M = max{|z|* : ¢ € Q}
and we choose 3 > 0 with

2o ()M~ [z 4+ 1)% — h(z)

B
Let 5
a(z;€) = %(M —|z|> +1).
Then
EAu(z;€) + |a(z; €)[“sgn(a(z; €)) — h(z)
= —€?B + <2ﬁﬁ) (M — |z|* + 1)* — h(z)
B\« - SL'2 o _ hiz
gl LM lef 21 - )

<0
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if 8 > 0 is sufficiently large. Hence, if we choose 8 > 0 so that a(-;€)
is a supersolution of (Iy ) and u, < @(z;e) for all z € Q, then the
problem (Ip.) has a pair of positive subsolution u(-;€) and positive
supersolution %(+; €) so that

u(z;€) < up < a(z;e)
for all x € Q. Then we have the following existence theorem of three
solutions of (Io,c).

THEOREM 2.1. There is a positive number ¢y such that for any ¢
with 0 < € < €g, the problem (Iy ) has at least three solutions u;(z;€),
ug(x;€), us(z;€) such that

ug(z;€) < uz(x;e) < upzse),

ui(z;€) >0, ug(x;e) <0
for all z € Q.

Proof. Let u > 0. We choose A which satisfies the inequalities and
the equality (2), (3), (4), and (5). Then from the above calculations,
for any 0 < € < €; we have already constructed a pair of subsolution
u; (z; €) and supersolution @;(z;€) of (Ip.) with the following proper-
ties;

0 <wuy(zse) <urlx) < ar(zse)

for all z € Q, where u;(z) is the positive solution of the equations
for all z € Q and

Furthermore,
lim u, (25 €) = w, (@)
e—0

uniformly on every compact subset of Q. And

Baw6) = (M~ [ +1)
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for some sufficiently large 8 > 0.

We construct another pair of negative subsolution and negative su-
persolution of (Ip ).

For any u < 0 and for any A > 0 satisfying the inequality (2), let

f(xa'u'a )‘) = —lula - h(il)) — Au.

Then, by the similar calculation to the previous paragraph, we get
f(z,-,A) has the negative minimum at

on the interval (—o0,0]. Let uz(z) be the solution of the equations
—t|* ~h(z) = At =0, (t<0).

Then

for all z € Q, and
t t
/ £(@,u, A)du = / (—lul® — h(z) - Au)du < 0
uz(x) uz(z)

for any t € (uz(x),0].

Again, by the construction ([13,14,17]) of supersolutions of (I)),
there is a positive number €3 such that for any 0 < € < €2, (I ) has a
negative solution iy(z;€) € C?(Q) with the property

ug(z) < d2(z;€) <0
for all z € Q. Moreover,

lim U2 (7; €) = uz(z)



Multiplicity and stability of solutions 95

uniformly on every compact subset of ). As before, we note that
Uz(z;€) is a negative supersolution of (Ipc). Let g = min{ey,es}.
Then for any 0 < € < €g, we choose a positive number v so that if we
let

.,
(7€) = — L (M~ Jaf? + 1),

then uy(z; €) is a subsolution of (Ip ) and
uy(z; €) < (s €)
for all z € Q. 0

To complete the proof, we introduce the following notations:

DEFINITION. (i) Let v,w € C(f). v < w means that v(z) < w(zx)
for all z € Q but v # w. v < w means that either v < w or v = w.
(if) We denote an ordered interval

v,wl={ueC@):v<u<w}

With the above notation, if 0 < € < ¢y, then we get three ordered
intervals [u,, @], [us, G2], [u;,@1] where u; = u,;(x;€) and 4; = 4;(x;€),
¢ =1,2. Since 4y < uy, we know that

[EZ’Q_/’?] N [y-l,ﬂl] =0.

To show the existence of three solutions of (Iy ), we are going to calcu-
late the fixed point index for some suitable nonlinear operator defined

from C(Q) N [u,, 1] into C(Q). ) B
Consider the nonlinear operator T': C7(2)N[uy, 41} — C(€2) defined
as follows: for any u € C"(Q) N [ug, @), 0 < 7 < 1,

Tu=v

if v is the unique solution of the linear boundary value problem

{ e2Av — M + Ju(z)|?*sgn(u(z)) — h(z) =0 in €
v=0 on Of.
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Here, )\ > 0 satisfies the inequality (2). In order that T is well-defined,
we have to check the function |u|*sgn(u) is Holder continuous in a
suitable closed and bounded interval containing 0. In fact, it is a-
Holder continuous. We prove the following inequality:

|lul*sgn(u) — |v|*sgn(v)] < 2Ju - v|*
for all ordered pairs (u,v) in R2. To show the inequality, we consider
the function

fu,v) = [|u|*sgn(u) — |v[*sgn(v)| — Ju — v|*
on the set
Dk ={(u,v) : 0<u< K, 0<v<K, v<u}
for some positive constant K. Then
flu,v) =u* —v* — (u —v)°

and 5
= (u,v) = au®"}
Bu( )=oau
Hence f does not have the maximum in the interior of Dg. By simple

calculation of f on the boundary 0Dy of the domain, we can show
flu,v) <0

for all (u,v) € Dk. By the similar calculations, we can show that
flu,v) <0

a—1

— afu —v)

for all (u,v) in the domain
{(u,v) : 0<u<K,0<v<K, ulv}
Likewise, we can prove that if —K <u < 0 and —K <v <0, then
|lu|*sgn(u) — [v|*sgn(v)| < |u—v|*.
Let uv < 0. Assume that u > 0 and v < 0. Then
||u|*sgn(u) — |v|*sgn(v)| _ u® + |v|*
|u — v]e Cfutfofle T
Similarly, we can also show that the inequality for the case u < 0 and
v > 0. Consequently,

|lu|*sgn(u) — [v|*sgn(v)| < 2|u —v|*

for all (u,v) with —K < u,v < K. Since K was arbitrary, we are done.
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The Continuation of the Proof of Theorem 2.1. From the above re-
sult, T' is well-define, and by the maximum principle (see [21]), we can
prove T' is increasing if A > 0 is sufficiently large. By the standard ex-
tension method ([17]) we can also show that T is a compact increasing

operator define on C(2) N [u,, @] into itself. Moreover, we note that
if u is a fixed point of the operator equation

Tu=mu
in C(Q), then u is a classical solution of (Io,e) (see [23]). By the
maximum principle, we have the following;
Since T' is increasing in the sense of the usual ordered Banach space
C(9), we get the following results:

T([ug, W) C [ug, ],
T([ﬂuﬁz]) - [-uhﬂiL t=1,2,
and then we know that the following fixed point indices
Z(T7 [QQ, 7ll]) [ﬁQa 17'1]) = 17
’L(T, [Qia’ai]a [’Quﬁzl) =1 for i= 1727
and, by the additivity of the fixed point index
T, [ug, aa] \ ([wy, Ba] U (g, @2]), fug, @1 \ ([t 1] U (19, Ta])) = —1.
From the above calculation, (Iy ) has three distinct solutions u (z; €),
uz(z; €), uz(; €) so that uy € [uy, 1}, uz € [uy, @s), and
ug € [ug, U1] \ ([tg, o] U fuy, 41]).

We note that, from the monotone property of T', there is a maximal

solution ui(z;€) > 0 in [uy,%1) and a minimal solution uy(z;€) < 0 in
[ug, 2]. Hence, we have

uo(z; €) < usz(z;€) < ui(z;e)
for all z € Q. This completes the proof. O

To show the existence of three solutions of the problem (I) when
l|A]l is sufficiently small, we fix A and solve the following problem as
n— 0%:

Au+ |u|%sgn(u) = pha(z) in Q
(In)

u=0 on 890
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THEOREM 2.2. There is 19 > 0 such that for all 0 < n < g, (I)
has at least three distinct solutions u1(+;n), ua(+;n), and us(-;n) such
that u; > 0 and ug < 0.

Proof. To prove the theorem, we construct two pairs of subsolutions

and supersolutions of (I,,) when 1 > 0 is sufficiently small.

We choose the positive number p with p > —2-. Let h # 0 and

l-a*
let n = n(e) = €P~2 for all 0 < € < €, where ¢y is the constant in
Theorem 2.1. Let u, be the positive solution of the problem (Iy ) and
let u,y (z;n) = €Pue. Then

Auy + |ug|*sgn(uy) — nh(z)
= ePAue + |ePuc|® — nh(z)
= €72 (—(ue)® + h(z)) + E*ug — nh(z)
= (P* — P 2)ul + P 2h(z) — nh(z)
>0

if € > 0 is sufficiently small. Hence, u, is a positive subsolution of (I).
Let @ = £ (M — |z|? + 1). Then

AT+ |u|*sgn(a) — nh(z)

= -0+ (%) (M — |z|? + 1)* — nh(z)
B
2

— 5|1~ (#) - '“’; +1)% =~ nh()
<0

if 8 > 0 is sufficiently large. Clearly, u;(z) < @;(z) for all z € Q.
Therefore, we have a pair of positive subsolution and positive superso-
lution of (I).

By the similar method, we can also construct another pair of nega-
tive subsolution and negative supersolution, u, and g, of (I,)) so that

Uy < U < 0 < uy < Un.
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Hence, the existence of three distinct solutions follows from the calcu-
lation of the fixed point index in the proof of Theorem 2.1.

The above method works for the case h is identically zero on €.
This completes the proof. O

The following theorem gives a limiting behavior of solutions of (I,,)
asn — 0.

THEOREM 2.3. Let h < 0. Then there is g > 0 such that for all
0 < n < no, (I,) has a positive solution u, converging to a positive
solution of (Iy) as n — 0.

Proof. We note, from Theorem 2.2, the existence of positive number
7o such that for all 0 < 1 < ng, the problem (I,,) has a positive solution
and a negative solution.

For 0 < n < ng and for any z € Q, we define

up(z) = sup{u(x) : uis a positive solution of (I,))}.

We first claim that sup,cq|u;(z)] < oco. Suppose if not. Then
there is a sequence {u},}$2, of solutions of (I;) such that |Ju| — oo
as ¢ — 0o. Divide the equation (I;;) by [|uf ||, then

i ll) " Tradll ~ Tedl]

Hence, we have that A]% — 0 as i — oo. Since {II—Z%—H} is a bounded

sequence, by the limiting arguments (see [24]), we can choose a conver-
gent subsequence, and its limit ug satisfies that Aupg = 0in Qand u = 0

on 0. Hence, up = 0 from the maximum principle. But [|”—:ﬁ7ﬂ]| =1
n

for all 4, and so ||ug|| = 1. This leads to a contradiction.
We secondly claim that u; is also a positive solution of (I,). To

show that, we choose a large supersolution @, = 4 (M — |z|? + 1) of

(I) so that u; < 4,. By the monotone iteration method (see [23]), we
have a maximal solution u so that u:/ < u < i,. By the definition of

* *
Uy, Uy = U.
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We note that if o < m1 and wu,, is a solution of (I,), then uy,,
is a subsolution of (I,). Hence, u; is a subsolution of (I,), and
from the definition of u;,, we have the inequality u; < uy;,. By
the mathematical induction, we have an increasing sequence {u; }

of positive solutions of (I, ) as 7m — 0 and m — oo. Let
u*(z) = sup{u, (z) : m=1,23,---}

for any z € (). From the similar argument as before, u* is bounded
above. By the limiting arguments and a regularity results (see [21]) u*
is a positive solution of (Ip). This completes the proof. O

COROLLARY. Let h > 0. Then there is ng > 0 such that for all
0 < n < no, (I) has a negative solution converging to a negative
solution of (Ip) as n — 0.

3. Stability

To get the stability of the equilibrium solution of the parabolic prob-
lem (I1I), we want to prove the uniqueness of solutions of (I). Because
we can easily construct a pair of subsolution and supersolution of (I).
First, we show the uniqueness of the solution when ||k — oco. Let us
consider the problems (1) as 7 — oo and we fixed h which is not zero
identically on £2. We note that if > 0, the problem (I,)) is equivalent
to the following problem: Let v = %‘

(1)

{ Av + nll_a [v|*sgn(v) —h=0 in
v=0 on Of.

THEOREM 3.1. Let h < 0. Then there is 9 > 0 such that for any
n > no, (I,) has the unique solution. Hence, it is stable.

Proof. Suppose that there is a sequence {n,,} with 7,, — oo as
m — oo such that (I, ) has at least two distinct solutions u,, and

ul,. Let v, = 7= and vy, = %:% Then v, and v], are two distinct
solutions of the problem (7, ).
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We claim that {v,,} and {v},} are bounded sequences in C(Q2). We
only prove that {v,, } is bounded. Suppose that (v, || — 0o as m — oo.

Let w,, = H_Zf:ﬂ Then

Aw,, = *L—Avm
l|vm ||
1 1
= o] "~ ialvmlegn(em))
h 1
= ||'Um“ - n}n_a“’l}mnl_a ‘wm|asgn(’u)m)

Hence, Aw,, — 0 as m — oco. By the limiting arguments and a
regularity result, This leads to a contradiction.

Since {vm} and {v],} are bounded sequences of solutions of elliptic
boundary value problems, we can choose a convergent subsequence, we
call it again, v, and v),. Let w = limy, o0 Um and w’ = lim,,_, oo v),.
Then by the similar argument of the above, w and w” are classical
solutions of the problem Au — h = 0 in Q and u = 0 on 692. By the
uniqueness of the linear problem w = w’ on €. Since h < 0, by the
maximum principle, we note that w(z) > 0 for all z € .

From the uniqueness of the solution w, we can assume that um () —
+00 and ul,(z) — +o0 in 2 as m — oco. Then

=

[ — ummll
1

T —ar | (@) g0 (um(2)) — i (2)|*sgn{um ()

1 1 ,
N lwm — ul, || elus, ()|}~ fum () — v, (2)|

in Q and u},(z) lies between u,,(z) and ], (z). Since u},(z) — 400
almost everywhere in €2, so

)
lim A Ym " %m _\ _q.
m—00 l|tm — ul, |
As the previous limiting arguments, this also leads to a contradiction.
This completes the proof. O
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COROLLARY. Let h > 0. Then there is 19 such that for any n > nyq,
(I,) has the unique solution. Hence, it is stable.

The following uniqueness of the solutions of (I,) depends on the
sign of h, but they show stability of the equilibrium solution of the
parabolic problem (I1I) if n is sufficiently large.

THEOREM 3.2. Let h < 0. Then there is a unique positive solution
of (I;) for all n > 0. Hence it is stable.

Proof. The existence of a positive solution is obvious, because u=0
is a subsolution of (I,,) and we can always choose a large positive su-
persolution of (I).

Suppose that there are two distinct positive solutions u and v of
(I,)- Since max{u(z),v(x)} is a subsolution of (1), we have a solution
which is larger than v and v. Hence, without loss of generality, we can
assume that u(x) > v(x) for all z € Q. Then by Green’s identity,

0= /Q[vAu — uAv]
= /Q[v(h —u®) —u(h — v%)]

= /[h(v —u) + (w)*(wr = — o7 > 0.
Q

This leads to a contradiction.
The positive solution is stable. Because, the positive solution lies
between a pair of subsolution and supersolution. i

COROLLARY 1. Let h > 0. Then there is a unique negative solution
of (I,) for all n > 0. Hence it is stable.

COROLLARY 2. Let h be identically zero in Q. The positive solution
and the negative solution of (I) are stable.

Proof. The existence of a positive solution and a negative solution of
(o) comes from Theorem 2.2. The uniqueness follows from the method
in the proof of Theorem 3.2. For the stability, as Section 2 we can easily
construct a pair of positive subsolution and positive supersolution of
(Io) which produce the positive solution. By the similar way, we have a
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pair of negative subsolution and negative supersolution for the negative
solution. 0

4. Structure of Solutions

THEOREM 4.1. Let h > 0 and have compact support in Q2. Then
there is n* > 0 such that

(1) (I,) has three distinct solutions which contains a positive solu-
tion and a negative solution if 0 < n < n*,

(2) (I-) has the unique positive solution and the unique negative
solution,

(3) (1) has no positive solution if 7 > n*, but only the negative
solution.

Proof. Let n* be the largest positive real number so that 0 <7 < n*
implies (I,)) has a positive solution. From Theorem 2.2, Corollary of
Theorem 3.1, and Corollary 1 of Theorem 3.2, we note that 0 < * <
00.

For 0 < n < n*, we define a function u, by
un(z) = sup{u(z) : uis a positive solution of (I)}.

We note that u, is a positive solution of (I,) and that 0 < n <7’ <n*
imply 4,y < u,. By the limiting argument, we also note that u,, ap-
proaches a positive solution u,« of (I»). For any 0 < n < 7%, the
solution u,« is a subsolution of (I,,) and we can construct a supersolu-
tion of (I,) which is larger than u,-, and then as the proof of Theorem
2.2, we have two pairs of subsolutions and supersolutions about (I,),
and hence using the fixed point index as before, we have distinct three
solutions. This prove (1).

To show the uniqueness of u,-, we suppose that there are two posi-
tive solutions u and v of (I,»). Since we can choose a large supersolu-
tion of (I;~) so that it is larger than u and v, we can assume, without
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loss of generality, that v > v > 0. Then

A(M) + (M)a

2 2
> 2 Adu(z) +v(a)) + 5(((z)° + (0(2)%)
=n"h(z)

for all z € Q. Since h has compact support in 2, there is a small
positive number § so that

a (MDY <i)%(—‘”—)) > (1" + 6)h(a)

for all z € . Hence “¥* is a subsolution of (Iy-15), and then (I 5)
has a positive solution. Therefore, for any n* <n <n* + 9, up-45is a
subsolution of (I,), and hence (I,;) has a positive solution. This leads
to a contradiction for the definition of n*. The uniqueness about the
negative solution has been proved in Corollary 1 of Theorem 3.2. This
proves (2).

The nonexistence of positive solutions of (I,) when n > n* is also
trivial. Because if there is 79 > n* so that (I,,,) has a positive solution,
by the same construction of a pair of subsolution and supersolution
with a positive solution u,,, we have that, for all 0 < n <o (I), has
a positive solution. This also leads to a contradiction. This completes
the proof. O

We note that if h < 0, (I,;) has the unique positive solution for all
n2>0.

COROLLARY. Let h < 0 and have a compact support in §). Then
there is n* > 0 such that

(1) (I,,) has three distinct solutions which contains a positive solu-
tion and a negative solution if 0 < n < n*,

(2) (I,-) has the unique negative solution and the unique positive
solution,

(3) (I,,) has no negative solution if n > n* but only the positive
solution.
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We have from the following theorem a kind of structure of three
solutions of (I,).

THEOREM 4.2. Let Q2 be an open ball and let h be positive constant.
Then there is a positive number n* such that for all 0 < n < n* (I,)
has two distinct positive solutions u, < u, so that

(1) (I,) has three distinct solutions which contains two positive
solutions and a negative solution if 0 < 1 < n*,

(2) (I+) has a unique positive solution and a unique negative so-
lution.

(3) uy, approaches the positive solution of (Ip) asn — 0,

(4) if n > n*, (I,) has no positive solution but only the negative
solution.

Proof. Let n* be the largest positive real number so that 0 < n < n*
implies (I;;) has a positive solution and let

(%) un(z) = sup{u(x) : u is a positive solution of (I,)}.

By Corollary of Theorem 2.3 and Corollary of Theorem 3.2, u,, ap-
proaches a positive solution of (Ip) as 7 — 0. This proves (3).

Using the limiting argument and maximum principles, we can easily
prove the existence of a positive solution of (I,») as n — n*. We will
show the uniqueness for the solution in the end of this proof.

The nonexistence for n > n* of a positive solution of (I,)) are trivial
from Corollary of Theorem 3.1 and Corollary 1 of Theorem 3.2.

To prove (1) we find another positive solution of (J,)) if n < n*. Let
up be the large positive supersolution of (Iy) so that u, < wug for all
0 < n < n*. We consider the order interval [0, 4o} defined by

[0,u0) = {u e C(Q) : 0<u<u}
and we define the nonlinear operator T}, from [0,uo] into C(Q) as fol-

lows: Give 0 < u < ug, v = T,u is the unique solution of the following
problem:

Av+u®(z)—nh=0 in Q
v=0 on I
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Then T, is trivially completely continuous and increasing. From Corol-
lary of Theorem 3.1 and Corollary of Theorem 3.2, the fixed point index

i(Ty,,[0,u0], [0,u0)) =0 if 7 >n".

For the compact real interval [n,7,] we define the completely con-
tinuous map

H : [n,m:] x [0,u0] — C(2)

by H(n',u) = Tyu for n <n' < n,. From the symmetric property (see
[9]) of positive solutions and maximum principles, we can prove that

H(n',u) #u for (n',u) € [n,n:] x 6[0,uo,

where 8]0, up) is the boundary of the order interval [0, ug] in the ordered
Banach space C(Q) (see [1]). In fact, if there is u so that Tyu = u
and u € 8[0,up). Then u is a positive solution of (I,;), and so u is
radially symmetric, and hence g—‘r‘ < 0 with respect to the radius r (see
[9]). Hence there is a point zo € © such that u(xg) = up(zo). This is
impossible from maximum principles.

By the homotopy invariance of the fixed point index,
i(T’f]'y [07 Uo], [O}UO]) =0

for all ' € [n,7n.]. We note that if n <7’ < n* and if u,y is the positive
solution defined by (x) of (1), then u,y < ug and u, is a subsolution
of (I)). Clearly [, ug] C [0, uo] and

(T, [y, wo),s [unf,uo]) =1
By the additivity of the fixed point index,
(T, [0,u0] \ [ur, uol, [0, uo] \ [un, uo]) = —1.

Therefore, there is another positive solution u; € [0,uo] \ [uy,uo] of
(I). The existence of three distinct solutions can be obtained by the
similar method in proof of Theorem 4.1.

We prove the uniqueness of the positive solution for (I,.). First,
we choose a large positive supersolution u; of (Ip) so that up < wi.
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Without loss of generality, we assume that the unique positive solution
of (Ip) is less than wg. Suppose that there are two distinct positive
solutions v and w of (I). By the following inequality;

A(w) N (M)“ S h

for all z € Q, we note that ”—“Sﬂ is a subsolution for all the problem
(I,) with 0 <7 < n*. We can apply the homotopy invariance property
in the order interval [”;w,ul] of the Leray-Schauder degree for the
operator T, as before. This means that we use the homotopy H(n,u) =
Tyu for n > 0. Then we have two distinct positive solutions of the
problem (Ip). This leads to a contradiction for the uniqueness of the

positive solution of (lp). O

COROLLARY. Let Q2 be an open ball and let h be negative constant.
Then there is a positive number n* such that for all 0 < n < n* (I)
has two distinct negative solutions u; < u, so that

(1) (I,) has three distinct solutions which contains two negative
solutions and a positive solution if 0 < 1 < n*,

(2) (I~) has a unique positive solution and a unique negative so-
lution,

(3) u, approaches the negative solution of (Iy) asn — 0,

(4) ifn > n*, (I,) has no negative solution but only the positive
solution.

REMARK. Assume A is a negative constant and {2 is a ball in R™.
We define the ordered pair (u,7) by u is a solution of the problem (I,).
Let n be fixed and let C,, be the set of all possible pairs (u,7n). By
Theorem 4.2 and its Corollary, we note that a S-shaped curve (u,n) is
embedded in U,cRriCy.
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