• 제목/요약/키워드: Sasakian manifolds

검색결과 99건 처리시간 0.018초

On Lorentzian α-Sasakian Manifolds

  • Yildiz, Ahmet;Murathan, Cengizhan
    • Kyungpook Mathematical Journal
    • /
    • 제45권1호
    • /
    • pp.95-103
    • /
    • 2005
  • The present paper deals with Lorentzian ${\alpha}-Sasakian$ manifolds with conformally flat and quasi conform ally flat curvature tensor. It is shown that in both cases, the manifold is locally isometric with a sphere $S^{2^{n}+1}(c)$. Further it is shown that an Lorentzian ${\alpha}-Sasakian$ manifold with R(X, Y).C = 0 is locally isometric with a sphere $S^{2^{n}+1}(c)$, where c = ${\alpha}^2$.

  • PDF

ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • De, Uday Chand;De, Krishnendu
    • 대한수학회논문집
    • /
    • 제27권4호
    • /
    • pp.795-808
    • /
    • 2012
  • The object of the present paper is to study 3-dimensional trans-Sasakian manifolds with conservative curvature tensor and also 3-dimensional conformally flat trans-Sasakian manifolds. Next we consider compact connected $\eta$-Einstein 3-dimensional trans-Sasakian manifolds. Finally, an example of a 3-dimensional trans-Sasakian manifold is given, which verifies our results.

CLASSIFICATION OF THREE-DIMENSIONAL CONFORMALLY FLAT QUASI-PARA-SASAKIAN MANIFOLDS

  • Erken, Irem Kupeli
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.489-503
    • /
    • 2019
  • The aim of this paper is to study three-dimensional conformally flat quasi-para-Sasakian manifolds. First, the necessary and sufficient conditions are provided for three-dimensional quasipara-Sasakian manifolds to be conformally flat. Next, a characterization of three-dimensional conformally flat quasi-para-Sasakian manifold is given. Finally, a method for constructing examples of three-dimensional conformally flat quasi-para-Sasakian manifolds is presented.

CONFORMAL SEMI-SLANT SUBMERSIONS FROM LORENTZIAN PARA SASAKIAN MANIFOLDS

  • Kumar, Sushil;Prasad, Rajendra;Singh, Punit Kumar
    • 대한수학회논문집
    • /
    • 제34권2호
    • /
    • pp.637-655
    • /
    • 2019
  • In this paper, we introduce conformal semi-slant submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds. We investigate integrability of distributions and the geometry of leaves of such submersions from Lorentzian para Sasakian manifolds onto Riemannian manifolds. Moreover, we examine necessary and sufficient conditions for such submersions to be totally geodesic where characteristic vector field ${\xi}$ is vertical.

ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS

  • Kim, Jeong-Sik;Prasad, Rajendra;Tripathi, Mukut-Mani
    • 대한수학회지
    • /
    • 제39권6호
    • /
    • pp.953-961
    • /
    • 2002
  • Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension $\geq$ 5 are locally classified. It is also proved that if M is one of Sasakian, $\alpha$-Sasakian, Kenmotsu or $\beta$-Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.

THE STUDY OF *-RICCI TENSOR ON LORENTZIAN PARA SASAKIAN MANIFOLDS

  • M. R. Bakshi;T. Barman;K. K. Baishya
    • 호남수학학술지
    • /
    • 제46권1호
    • /
    • pp.70-81
    • /
    • 2024
  • We consider the *-general critical equation on LP Sasakian manifolds, and show that such a manifold is generalized η-Einstein. After then, we consider LP Sasakian manifolds with *-conformally semisymmetric condition, and show that such manifolds are *-Einstein. Moreover, we show that the *-conformally semisymmetric LP Sasakian manifold is locally isometric to En+1(0) × Sn(4).

Generalized Quasi-Einstein Metrics and Contact Geometry

  • Biswas, Gour Gopal;De, Uday Chand;Yildiz, Ahmet
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.485-495
    • /
    • 2022
  • The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

η-RICCI SOLITONS ON TRANS-SASAKIAN MANIFOLDS WITH QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Bahadir, Oguzhan;Siddiqi, Mohd Danish;Akyol, Mehmet Akif
    • 호남수학학술지
    • /
    • 제42권3호
    • /
    • pp.601-620
    • /
    • 2020
  • In this paper, firstly we discuss some basic axioms of trans Sasakian manifolds. Later, the trans-Sasakian manifold with quarter symmetric non-metric connection are studied and its curvature tensor and Ricci tensor are calculated. Also, we study the η-Ricci solitons on a Trans-Sasakian Manifolds with quartersymmetric non-metric connection. Indeed, we investigated that the Ricci and η-Ricci solitons with quarter-symmetric non-metric connection satisfying the conditions ${\tilde{R}}.{\tilde{S}}$ = 0. In a particular case, when the potential vector field ξ of the η-Ricci soliton is of gradient type ξ = grad(ψ), we derive, from the η-Ricci soliton equation, a Laplacian equation satisfied by ψ. Finally, we furnish an example for trans-Sasakian manifolds with quarter-symmetric non-metric connection admitting the η-Ricci solitons.

A Class of Lorentzian α-Sasakian Manifolds

  • Yildiz, Ahmet;Turan, Mine;Murathan, Cengizhan
    • Kyungpook Mathematical Journal
    • /
    • 제49권4호
    • /
    • pp.789-799
    • /
    • 2009
  • In this study we consider ${\varphi}$-conformally flat, ${\varphi}$-conharmonically flat, ${\varphi}$-projectively at and ${\varphi}$-concircularly flat Lorentzian ${\alpha}$-Sasakian manifolds. In all cases, we get the manifold will be an ${\eta}$-Einstein manifold.