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CLASSIFICATION OF THREE-DIMENSIONAL

CONFORMALLY FLAT QUASI-PARA-SASAKIAN

MANIFOLDS

Irem Kupeli Erken

Abstract. The aim of this paper is to study three-dimensional con-
formally flat quasi-para-Sasakian manifolds. First, the necessary
and sufficient conditions are provided for three-dimensional quasi-
para-Sasakian manifolds to be conformally flat. Next, a character-
ization of three-dimensional conformally flat quasi-para-Sasakian
manifold is given. Finally, a method for constructing examples of
three-dimensional conformally flat quasi-para-Sasakian manifolds is
presented.

1. Introduction

Almost paracontact geometry was first introduced and studied by
Kaneyuki and Williams in [9] and then many other authors continued
to study. Zamkovoy studied almost paracontact metric manifolds in [20].
Because of there are lots of studies on almost contact geometry, it seems
there should be new studies about almost paracontact geometry. There-
fore, paracontact metric manifolds have been studied in recent years by
many authors, emphasizing similarities and differences with respect to
the most well known contact case. Interesting papers connecting these
fields are, for example, [6], [4], [18], [20], and references therein.

Z. Olszak studied normal almost contact metric manifolds of dimen-
sion three [15]. He derived certain necessary and sufficient conditions
for an almost contact metric structure on manifold to be normal. He
found curvature properties of such structures and he considered normal
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almost contact metric manifolds of constant curvature. Curvature and
torsion of Frenet-Legendre curves in three-dimensional normal almost
paracontact metric manifolds were investigated in [19] and then normal
almost paracontact metric manifolds were studied in [1], [10], [11].

The notion of quasi-Sasakian manifolds, introduced by D. E. Blair
in [2], unifies Sasakian and cosymplectic manifolds. A quasi-Sasakian
manifold is a normal almost contact metric manifold whose fundamental
2-form Φ := g(·, φ·) is closed. Quasi-Sasakian manifolds can be viewed as
an odd-dimensional counterpart of Kaehler structures. These manifolds
studied by several authors (e.g. [8], [14], [16], [17]).

Quasi-Sasakian manifolds were studied by many different authors and
are considered a well-established topic in contact Riemannian geometry.
But to the author’s knowledge, there do not exist any comprehensive
study about quasi-para-Sasakian manifolds.

Motivated by these considerations, in [13], the author makes the first
contribution to investigate basic properties and general curvature iden-
tities of quasi-para-Sasakian manifolds.

In this paper, we study three-dimensional conformally flat quasi-para-
Sasakian manifolds.

Section 2 is preliminary section, where we recall the definition of
almost paracontact metric manifold and quasi-para-Sasakian manifolds.

In Section 3, we mainly proved that for a three-dimensional quasi-
para-Sasakian manifold M , the followings are equivalent.

i) M is locally symmetric.

ii) M is conformally flat and its scalar curvature τ is const.,

iii) M is conformally flat and β is const.,

iv)• If β = 0, thenM is a paracosymplectic manifold which is locally a
product of the real line R and a 2-dimensional para-Kaehlerian manifold
or

•If β 6= 0, then M is of constant negative curvature and the quasi-
para-Sasakian structure can be obtained by a homothetic deformation
of a para-Sasakian structure.

Finally, we gave a theorem which gives a method for constructing ex-
amples of three-dimensional conformally flat quasi-para-Sasakian mani-
folds.
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2. Preliminaries

A (2n+1)-dimensional differentiable manifold M has an almost para-
contact structure (φ, ξ, η) if it admits a (1, 1) tensor field φ, a vector field
ξ and a one-form η satisfying followings

(i) φ2 = Id− η ⊗ ξ, η(ξ) = 1,
(ii) distribution

D : p ∈M → Dp ⊂ TpM : Dp = Kerη = {X ∈ TpM : η(X) = 0}
is called paracontact distribution generated by η.

The manifold M is said to be an almost paracontact manifold if it is
endowed with an almost paracontact structure [20].

If an almost paracontact manifold admits a pseudo-Riemannian met-
ric g of a signature (n+ 1, n), i.e.

(1) g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),

then the manifold will be called an almost paracontact metric manifold
and g is compatible.

For such manifold, we have

(2) η(X) = g(X, ξ), φ(ξ) = 0, η ◦ φ = 0.

Moreover, we can define a skew-symmetric tensor field (a 2-form) Φ
by

(3) Φ(X,Y ) = g(X,φY ),

usually called fundamental form.
For an almost paracontact manifold, there exists an orthogonal basis

{X1, . . . , Xn, Y1, . . . , Yn, ξ} such that g(Xi, Xj) = δij , g(Yi, Yj) = −δij
and Yi = φXi, for any i, j ∈ {1, . . . , n}. Such basis is called a φ-basis.

On an almost paracontact manifold, one defines the (1, 2)-tensor field

N (1) by

(4) N (1)(X,Y ) = [φ, φ] (X,Y )− 2dη(X,Y )ξ,

where [φ, φ] is the Nijenhuis torsion of φ

[φ, φ] (X,Y ) = φ2 [X,Y ] + [φX, φY ]− φ [φX, Y ]− φ [X,φY ] .

The almost paracontact manifold (structure) is said to be normal

when N (1) = 0 [20]. The normality condition implies that the almost
paracomplex structure J is integrable which is defined by

J(X,λ
d

dt
) = (φX + λξ, η(X)

d

dt
),
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on M × R.
If dη(X,Y ) = g(X,φY ), then η is a paracontact form and the almost

paracontact metric manifold (M,φ, ξ, η, g) is said to be paracontact met-
ric manifold. In a paracontact metric manifold one defines a symmetric,
trace-free operator h = 1

2Lξφ, where Lξ, denotes the Lie derivative. In
[20], it is proved that the operator h satisfies the followings: hξ = 0,
trh =trhφ = 0 and ∇ξ = −φ + φh, where ∇ is the Levi-Civita connec-
tion of the pseudo-Riemannian manifold (M, g). Also h anti-commutes
with φ .

Moreover h = 0 if and only if ξ is Killing vector field. In this case
(M,φ, ξ, η, g) is said to be a K-paracontact manifold. Similarly as in the
class of almost contact metric manifolds [3], a normal almost paracon-
tact metric manifold will be called para-Sasakian if Φ = dη [7]. The
para-Sasakian condition implies the K-paracontact condition and the
converse holds only in dimension three. A paracontact metric manifold
will be called paracosymplectic if dΦ = 0, dη = 0 [6].

Now, we will give some results about three-dimensional quasi-para-
Sasakian manifolds that we will use next sections.

Proposition 2.1. [19] For a three-dimensional almost paracontact
metric manifold M the following three conditions are mutually equivalent

(a) M is normal,
(b) there exist functions α, β on M such that

(5) (∇Xφ)Y = β(g(X,Y )ξ − η(Y )X) + α(g(φX, Y )ξ − η(Y )φX),

(c) there exist functions α, β on M such that

(6) ∇Xξ = α(X − η(X)ξ) + βφX.

Corollary 2.2. [10] For a normal almost paracontact metric struc-
ture (φ, ξ, η, g) on M , we have ∇ξξ = 0 and dη = −βΦ. The functions
α, β realizing ( 5) as well as (6) are given by [19]

(7) 2α = Trace {X −→ ∇Xξ} , 2β = Trace {X −→ φ∇Xξ} .

Proposition 2.3. [19] For a three-dimensional almost paracontact
metric manifold M , the following three conditions are mutually equiva-
lent

(a) M is quasi-para-Sasakian,
(b) there exists a function β on M such that

(8) (∇Xφ)Y = β(g(X,Y )ξ − η(Y )X),
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(c) there exists a function β on M such that

(9) ∇Xξ = βφX.

A three-dimensional normal almost paracontact metric manifold is

• quasi-para-Sasakian if and only if α = 0 and β is certain function
[7], [19], in particular, para-Sasakian if β = −1 [19], [20],

• paracosymplectic if α = β = 0 [6],

• α-para-Kenmotsu if α 6= 0 and α is constant and β = 0 [12].

Namely, the class of para-Sasakian and paracosymplectic manifolds
are contained in the class of quasi-para-Sasakian manifolds.

Theorem 2.4. [10]Let (M,φ, ξ, η, g) be a three-dimensional normal
almost paracontact metric manifold. Then the following curvature iden-
tities hold

R(X,Y )Z

= (2(ξ(α) + α2 + β2) +
1

2
τ)(g(Y,Z)X − g(X,Z)Y )

−(ξ(α) + 3(α2 + β2) +
1

2
τ)((g(Y,Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y )+(φZ(β)− Z(α))(η(Y )X − η(X)Y )

+(φY (β)− Y (α))(η(Z)X − g(X,Z)ξ)(10)

− (φX(β)−X(α)) (η(Z)Y − g(Y,Z)ξ)

+(φgradβ + gradα)(η(Y )g(X,Z)− η(X)g(Y,Z)).

S(Y, Z) = −(ξ(α) + α2 + β2 +
1

2
τ)g(φY, φZ)(11)

+η(Z) (φY (β)− Y (α))

+η(Y ) (φZ(β)− Z(α))− 2(α2 + β2)η(Y )η(Z),

where R, S and τ are resp. Riemannian curvature, Ricci tensor and
scalar curvature of M .

If we take α = 0 in Theorem 2.4, we get following



494 Irem Kupeli Erken

Theorem 2.5. Let (M,φ, ξ, η, g) be a three-dimensional quasi-para-
Sasakian manifold. Then the following curvature identities hold

R(X,Y )Z

= (2β2 +
1

2
τ)(g(Y, Z)X − g(X,Z)Y )

−(3β2 +
1

2
τ)((g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ) + φZ(β)(η(Y )X − η(X)Y )

+φY (β)(η(Z)X − g(X,Z)ξ)

−φX(β)(η(Z)Y − g(Y, Z)ξ)

+(φgradβ)(η(Y )g(X,Z)− η(X)g(Y,Z)).(12)

S(Y,Z) = (β2 +
1

2
τ)g(Y,Z)− (3β2 +

1

2
τ)η(Y )η(Z)

+η(Y )φZ(β) + η(Z)φY (β).(13)

where R, S and τ are resp. Riemannian curvature, Ricci tensor and
scalar curvature of M .

Remark 2.6. In the proof of Theorem 2.4, the author showed that
ξ(β) + 2αβ = 0. Namely, for three-dimensional quasi-para-Sasakian
manifolds,

(14) ξ(β) = 0.

Theorem 2.7. [13]Let (M2n+1, φ, ξ, η, g) be a quasi-para-Sasakian
manifold of constant curvature K. Then K ≤ 0. Furthermore,

•If K = 0, the manifold is paracosymplectic,
•If K < 0, the structure (φ, ξ, η, g) is obtained by a homothetic

deformation of a para-Sasakian structure on M2n+1.

3. Three-dimensional conformally flat quasi-Para-Sasakian
manifolds

For the conformal flatness of three dimensional semi-Riemannian
manifold, we will use linear (1, 1)-tensor field (Weyl-Schouten tensor)
L which is defined by

(15) L = Q− τ

4
Id,

where S(X,Y ) = g(QX,Y )[5].
From now on, we will use the notion df(X) instead of g(gradf,X).
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Lemma 3.1. The linear operator L of a three-dimensional quasi-
para-Sasakian manifold is given by

(16) LY =
(τ

4
+ β2

)
Y −

(
3β2 +

τ

2

)
η(Y )ξ− η(Y )φgradβ + dβ(φY )ξ.

Proof. By (13), we obtain

(17) QY =
(τ

2
+ β2

)
Y −

(
3β2 +

τ

2

)
η(Y )ξ− η(Y )φgradβ+ dβ(φY )ξ.

The requested equation comes from combining (15) and the above last
equation.

From (16), we have

(∇XL)Y = ∇XLY − L∇XY

=

(
dτ(X)

4
+ 2βdβ(X)

)
Y −

(
6βdβ(X) +

dτ(X)

2

)
η(Y )ξ

−
(

3β2 +
τ

2

)
((∇Xη)(Y )ξ + η(Y )∇Xξ)

−(∇Xη)(Y )φgradβ−η(Y )(∇Xφ)gradβ−η(Y )φ∇Xgradβ
+(∇Xdβ)(φY )ξ + dβ((∇Xφ)Y )ξ + dβ(φY )∇Xξ.

If we use (8), (9) and (14) in the last equation, we can state following:

Lemma 3.2. For a three-dimensional quasi-para-Sasakian manifold,
the following formula is valid for the covariant derivative of the linear
operator L

(∇XL)Y =

(
dτ(X)

4
+ 2βdβ(X)

)
Y −

(
6βdβ(X) +

dτ(X)

2

)
η(Y )ξ

−β
(

3β2+
τ

2

)
(g(φX, Y )ξ+η(Y )φX)−βg(φX, Y )φgradβ

−βdβ(X)η(Y )ξ − η(Y )φ∇Xgradβ + (∇Xdβ)(φY )ξ

−βη(Y )dβ(X)ξ + βdβ(φY )φX.(18)

Lemma 3.3. For the the function β of three-dimensional quasi-para-
Sasakian manifold, the following equality holds

(19) ∇ξgradβ = βφgradβ.

Proof. By virtue of (14), we have
(20)

[ξ,X](β) = ξ(X(β))−X(ξ(β)) = g(∇ξgradβ,X) + g(gradβ,∇ξX).

By (9), we get

(21) [ξ,X](β) = g(gradβ, [ξ,X]) = g(gradβ,∇ξX) + βg(φgradβ,X).
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The proof comes from (20) and (21).

There exists a local orthonormal φ-basis {e1=φe2, e2=φe1, e3 = ξ},
such that g(e1, e1) = −g(e2, e2) = g(e3, e3) = 1, for any point p ∈ U ⊂
M .

For the sake of shortness, we will give followings

τi = dτ(ei),

βi = dβ(ei)

βij = (∇eidβ)(ej),

Lij = (∇eiL)ej

gradβ = β1e1 − β2e2 + β3e3,

∇eigradβ = βi1e1 − βi2e2 + βi3e3

for 1 ≤ i, j ≤ 3, where τi, βi, βij are the functions and Lij are the vector
fields on U . Also we can write,

(∇eidβ)(ej)−(∇ejdβ)(ei)=∇eidβ(ej)− dβ∇eiej −∇ejdβ(ei) + dβ∇ejei
= ei(ej(β))−(∇eiej)(β)−ej(ei(β))+(∇ejei)(β)

= [ei, ej ]β −
[
∇eiej −∇ejei

]
β

= 0.(22)

From (22) we have βij = βji. Moreover, we obtain

(∇eidβ)(ej) = ∇eidβ(ej)− dβ(∇eiej)
= ∇ei 〈gradβ, ej〉 − 〈gradβ,∇eiej〉
= 〈∇eigradβ, ej〉(23)

and

(24) (∇ejdβ)(ei) =
〈
∇ejgradβ, ei

〉
.

Namely

(25) 〈∇eigradβ, ej〉 =
〈
∇ejgradβ, ei

〉
.

We will use the well known formula for semi-Riemannian manifolds

trace {Y → (∇YQ)X} =
1

2
∇Xτ.

If we put X = ξ in the above formula and use (17) and (9), we have

(26) (∇YQ)ξ = −5βY (β)ξ + (−3β3 − β τ
2

)φY −∇Y φgradβ.
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Using (26), we get

1

2
ξ(τ) =

3∑
i=1

εig((∇eiQ)ξ, ei)

= −g(∇e1φgradβ, e1) + g(∇e2φgradβ, e2)− g(∇e3φgradβ, ξ)
where 1 ≤ i ≤ 3.

By the help of (5), (14) and (25) we find that

(27) ξ(τ) = τ3 = 0.

From (14) and (27), we obtain

(28) β3 = 0.

(19) implies that

(29) β13 = β31 = −ββ2, β23 = β32 = −ββ1, β33 = 0.

Lemma 3.4. For a three-dimensional quasi-para-Sasakian manifold,
the following is valid

Lij − Lji = 0 for 1 ≤ i, j ≤ 3⇔
τ1 = −20ββ1, τ2 = −20ββ2, β12 = β21 = 0,(30)

β22 = −β11 = β
(

3β2 +
τ

2

)
.

Proof. By direct computations, using (18), (19), (28) and (29), we
derive

L12 − L21 = −
(τ2

4
+ 5ββ2

)
e1 +

(τ1
4

+ 5ββ1

)
e2

+(β11 − β22 + β(τ + 6β2))ξ.

L13 − L31 = β12e1 +
(
−β11 − β

(
3β2 +

τ

2

))
e2

+
(
−τ1

4
− 5ββ1

)
ξ.

L23 − L32 =
(
β22 − β

(
3β2 +

τ

2

))
e1 − β12e2

+
(
−τ2

4
− 5ββ2

)
ξ.(31)

The proof follows from (31).

We know that a semi-Riemannian manifold is conformally flat⇔
(∇XL)Y − (∇Y L)X = 0, for any vector fields X and Y. Hence, we
can say that a three-dimensional quasi-para-Sasakian manifold is con-
formally flat if and only if (31) holds. By (31), we can give following
result.
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Theorem 3.5. A three-dimensional quasi-para-Sasakian manifold is
conformally flat if and only if the function β satisfies the followings

τ + 10β2 = const.,

(∇Xdβ)(Y ) = −β
(

3β2 +
τ

2

)
(g(X,Y )− η(X)η(Y ))

−βη(X)dβ(φY )− βη(Y )dβ(φX).(32)

Theorem 3.6. For a three-dimensional quasi-para-Sasakian mani-
fold M , the following assertions are equivalent to each other:

i) M is locally symmetric.
ii) M is conformally flat and its scalar curvature τ is const.,
iii) M is conformally flat and β is const.,
iv)• If β = 0, then M is a paracosymplectic manifold which is lo-

cally a product of the real line R and a 2-dimensional para-Kaehlerian
manifold or
• If β 6= 0, then M is of constant negative curvature and the quasi-

para-Sasakian structure can be obtained by a homothetic deformation of
a para-Sasakian structure.

Proof. First of all, (i) implies (ii) because of the dimM = 3. From
(32), one can see (ii) ⇔ (iii). Now, we will show (iii) implies (iv).
Using (32), we get β

(
3β2 + τ

2

)
= 0 and τ is const. Now there are

two possibilities. If β = 0, then M is a paracosymplectic manifold
which is locally a product of the real line R and a 2-dimensional para-
Kaehlerian manifold [6]. If β 6= 0, then τ = −6β2, namely M has
constant negative curvature. By using τ = −6β2 in (13), we get M is
Einstein since S = τ

3g. Using Theorem 2.7, one can say that the quasi-
para-Sasakian structure can be obtained by a homothetic deformation
of a para-Sasakian structure. One can easily deduce that (iv)⇒ (i).

Theorem 3.7. [21](a) The classes of the 3-dimensional normal al-
most paracontact metric manifolds are G5, G6 and G5 ⊕G6;

(b) The classes of the 3-dimensional paracontact metric manifolds are
Ḡ5 and Ḡ5 ⊕G10;

(c) The class of the 3-dimensional para-Sasakian manifolds is Ḡ5 ;
(d) The class of the 3-dimensional K-paracontact metric manifolds is

Ḡ5;
(e) The class of the 3-dimensional quasi-para-Sasakian manifolds is

G5 .

Let L be a three-dimensional real connected Lie group and g be its
Lie algebra with a basis {E1, E2, E3} of left invariant vector fields. An
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almost paracontact structure (φ, ξ, η) and a pseudo-Riemannian metric
g defined by

φE1 = E2, φE2 = E1, φE3 = 0,

ξ = E3, η(E3) = 1, η(E1) = η(E2) = 0,

g(E1, E1) = g(E3, E3) = −g(E2, E2) = 1,

g(Ei, Ej) = 0, i 6= j ∈ {1, 2, 3} .(33)

Then (L, φ, ξ, η, g) is a three-dimensional almost paracontact metric man-
ifold. Because of the metric g is left invariant, one can write Koszul
equality by following

(34) 2g(∇xy, z) = g([x, y] , z) + g([z, x] , y) + g([z, y] , x),

where ∇ is the Levi-Civita connection of g.
Let the commutators of g be defined by [Ei, Ej ] = CkijEk, where the

structure constants Ckij are real numbers and Ckij = −Ckji.

Theorem 3.8. [21]The manifold (L, φ, ξ, η, g) belongs to the class
Gi(i ∈ {5, 6, 10, 12}) if and only if the corresponding Lie algebra g is
determined by the following commutators:

G5 : [E1, E2] = C1
12E1 + C2

12E2 + C3
12E3,(35)

: [E1, E3] = C2
13E2,

[E2, E3] = C2
13E1 : C3

12 6= 0, C1
12C

2
13 = 0, C2

12C
2
13 = 0;

G6 : [E1, E2] = C1
12E1 + C2

12E2,(36)

: [E1, E3] = C1
13E1 + C2

13E2,

[E2, E3] = C2
13E1 + C1

13E2 : −2C1
13 6= 0,

C2
12C

2
13 − C1

13C
1
12 = 0, C1

12C
2
13 − C1

13C
2
12 = 0;

G10 : [E1, E2] = C1
12E1 + C2

12E2,(37)

: [E1, E3] = C1
13E1 + C2

13E2,

[E2, E3] = C1
23E1 − C1

13E2 : C2
13 6= C1

23 or C1
13 6= 0,

C1
12C

1
13 + C2

12C
1
23 = 0, C1

12C
2
13 − C2

12C
1
13 = 0;

G12 : [E1, E2] = C1
12E1 + C2

12E2,(38)

: [E1, E3] = C2
13E2 + C3

13E3,

[E2, E3] = C2
13E1 + C3

23E3 : C3
13 6= 0 or C3

23 6= 0,

(C1
12 − C3

23)C
2
13 = 0, (C2

12 + C3
13)C

2
13 = 0,

(C1
12 − C3

23)C
3
13 + (C2

12 + C3
13)C

3
23 = 0
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Theorem 3.9. A three-dimensional quasi-para-Sasakian manifold is
conformally flat if and only if the corresponding Lie algebra g is deter-
mined by the following commutator G5

(39) G5 : [E1, E2] = C3
12E3, [E1, E3] = C3

12E2, [E2, E3] = C3
12E1.

Proof. Assume that the three-dimensional quasi-para-Sasakian man-
ifold is conformally flat. Using (33), (34) and (36) we have

∇E1E1 = C1
12E2, ∇E2E1 = −C2

12E2 −
1

2
C3
12E3,

∇E3E1 = (−C2
13 +

1

2
C3
12)E2,

∇E1E2 = C1
12E1 +

1

2
C3
12E3, ∇E2E2 = −C1

12E1,

∇E3E2 = (−C2
13 +

1

2
C3
12)E1,

∇E1E3 =
1

2
C3
12E2, ∇E2E3 =

1

2
C3
12E1,

∇E3E3 = 0.

From (9), we get β = 1
2C

3
12 is a constant function. Using the above

covariant derivatives, we obtain

R(E1, E2)E3 = (
1

2
C3
12C

1
12 −

1

2
C2
12C

3
12)E1 + (

1

2
C3
12C

1
12 −

1

2
C1
12C

3
12)E2,

R(E1, E2)E2 = (−3

4
(C3

12)
2 − (C1

12)
2 + C2

12C
1
12 + C3

12C
2
13)E1

+(−(C1
12)

2 + C1
12C

2
12)E2,

R(E1, E2)E1 = (−C2
12C

1
12 + (C1

12)
2)E1

+(−3

4
(C3

12)
2 − (C1

12)
2 + (C2

12)
2 + C3

12C
2
13)E2,

R(E2, E3)E3 = (−1

4
(C3

12)
2)E2,

R(E2, E3)E2 = (−C2
13C

1
12)E1

+(C2
13C

2
12 −

1

2
C3
12C

2
12 − C1

12C
2
13 +

1

2
C1
12C

3
12)E2

+

(
−1

4
(C3

12)
2E3

)
,

R(E2, E3)E1 = C2
13(C

1
12 − C2

12)E1 +
1

2
C3
12(C

2
12 − C1

12)E1 − C2
13C

1
12E2,
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R(E1, E3)E3 = −1

4
(C3

12)
2E1,

R(E1, E3)E2 = C2
13C

1
12E1,

R(E1, E3)E1 = (C2
13C

2
12)E2 +

1

4
(C3

12)
2E3.

Using above equations, we have constant scalar curvature as follows,

S(E1, E1) =
1

2
(C3

12)
2 + (C1

12)
2 − C2

12C
1
12 − C3

12C
2
13,(40)

S(E2, E2) = −1

2
(C3

12)
2 − (C1

12)
2 + (C2

12)
2 + C3

12C
2
13,(41)

S(E3, E3) = −1

2
(C3

12)
2,(42)

τ = S(E1, E1)− S(E2, E2) + S(E3, E3),(43)

τ =
1

2
(C3

12)
2 + 2(C1

12)
2 − (C2

12)
2 − 2C3

12C
2
13 − C2

12C
1
12.(44)

Using the fact that our manifold is conformally flat, if we use Theorem
3.5 in (13) and by the equations (40), (41), we have

−1

2
(C3

12)
2 =

1

2
(C3

12)
2 + (C1

12)
2 − C2

12C
1
12 − C3

12C
2
13.(45)

1

2
(C3

12)
2 = −1

2
(C3

12)
2 − (C1

12)
2 + (C2

12)
2 + C3

12C
2
13.(46)

If we sum (45) and (46), we have

C2
12(C

2
12 − C1

12) = 0.

By virtue of the last equation, following cases occurs.
Case I: Accept C2

12 = 0. If we subtract (45) from (46) and use C2
12 = 0,

we obtain

(47) 2(C3
12)

2 = −2(C1
12)

2 + 2C3
12C

2
13.

Taking into account τ = −6β2 = −3
2(C3

12)
2 in (44), we get

(48) C3
12(C

2
13 − C3

12) = (C1
12)

2.

If we act C2
13 on both sides of the last equation and using the fact that

C3
12 6= 0 and C1

12C
2
13 = 0 in G5, we obtain

C2
13 = 0 or C2

13 = C3
12.

If we take C2
13 = 0, by (48) we get −(C3

12)
2 = (C1

12)
2. So C2

13 shold be
different from zero. If we take C2

13 = C3
12 in (47), we get C1

12 = 0.
Case II: Assume C2

12 = C1
12. By virtue of (45), we get

(49) C3
12(C

2
13 − C3

12) = 0.
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From (49), there are two possibilities. The first one is C3
12 = 0. But this

contradicts with the C3
12 6= 0 in G5. So the second one is C2

13 = C3
12. If

we use C2
13 = C3

12 in the fact that C3
12 6= 0, C1

12C
2
13 = 0, C2

12C
2
13 = 0 in

G5, we obtain C1
12 = C2

12 = 0.

Namely, by Case I and Case II, we get C1
12 = C2

12 = 0, C2
13 = C3

12

which gives us (39). The proof of converse side is obvious.

Remark 3.10. Using Theorem 3.9, one can construct several ex-
amples of three-dimensional conformally flat quasi-para-Sasakian mani-
folds. For example,

•For β = 2, using the commutators [E1, E2] = 4E3, [E1, E3] =
4E2, [E2, E3] = 4E1, one can get a 3-dimensional conformally flat proper
quasi-para-Sasakian manifold with τ = −24 which is neither the para-
cosymplectic manifold nor the para-Sasakian manifold.
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