References
- C. S. Bagewadi and Venkatesha, Some curvature tensors on a trans-sasakian manifolds, Turkish J. Math. 31 (2007), no. 2, 111-121.
- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Note in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, Vol. 203, Birkhauser Boston, Inc., Boston, 2002.
- D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1990), no. 1, 199-207. https://doi.org/10.5565/PUBLMAT_34190_15
- C. P. Boyer and K. Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419-2430. https://doi.org/10.1090/S0002-9939-01-05943-3
- D. Chinea and C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36. https://doi.org/10.1007/BF01766972
- D. Chinea and C. Gonzales, Curvature relations in trans-sasakian manifolds, in "Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol.II,(Portuguese), Braga, 1987", Univ. Minho, Braga, (1987), 564-571.
- U. C. De and A. Sarkar, On three-dimensional trans-Sasakian manifolds, Extracta Math. 23 (2008), no. 3, 265-277.
- U. C. De and M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), no. 2, 247-255.
- A. Gray and L. M. Hervella, The sixteen classes of almost hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35-58. https://doi.org/10.1007/BF01796539
- N. J. Hicks, Notes on Differential Geometry, Affilated East-West Press Pvt. Ltd. 1965.
- D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1981), no. 1, 1-27. https://doi.org/10.2996/kmj/1138036310
- J. B. Jun and U. K. Kim, On 3-dimensional almost contact metric manifolds, Kyungpook Math. J. 34 (1994), no. 2, 293-301.
- J. S. Kim, R. Prasad, and M. M. Tripathi, On generalized Ricci-recurrent trans-Sasakian manifolds, J. Korean Math. Soc. 39 (2002), no. 6, 953-961. https://doi.org/10.4134/JKMS.2002.39.6.953
- J. C. Marrero, The local structure of trans-sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86. https://doi.org/10.1007/BF01760000
- J. C. Marrero and D. Chinea, On trans-Sasakian manifolds, in "Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, Vol.I-III, (Spanish),Puerto de la Cruz, 1989", Univ. La Laguna, La Laguna (1990), 655-659.
- J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (1985), no. 3-4, 187-193.
-
S. S. Shukla and D. D. Singh, On
${\epsilon}$ -trans-Sasakian manifolds, Int. J. Math. Anal. (Ruse) 4 (2010), no. 49-52, 2401-2414. - K. Yano, Integral Formulas in Riemannian Geometry, Mercel Dekker, INC., New York, 1970.
Cited by
- Trans-Sasakian 3-Manifolds with Reeb Flow Invariant Ricci Operator vol.6, pp.11, 2018, https://doi.org/10.3390/math6110246